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ABSTRACT
We present a new method for achieving Focus + Context vi-
sualizations called smooth structural zooming, which varies
the level of detail of the data being visualized, rather than
geometrically distorting the visualization. We apply a pre-
liminary smooth structural zooming technique to the hor-
izontal–vertical (h–v) inclusion tree layout convention, in
particular Design Behaviour Trees (DBTs). We illustrate
several advantages of this system, including the ability to
navigate and explore inclusion tree layout data too large to
be displayed at once, keeping good layouts at all times and
preserving the user’s mental map with animation.
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1. INTRODUCTION
Visualization of relational data plays an important role in

software systems, particularly their design and modelling,
for example, call graphs, data-flow diagrams, Unified Mod-
elling Language (UML) [8], flowcharts and Nassi-Shneider-
man diagrams [6]. These visualization techniques work well
with small amounts of data, but like many visualizations
they are often less effective for large amounts of data.

One general solution is to use a visualization technique
known as Focus + Context [1]. This involves displaying
a central focus region at full magnification, so that details
in the data may be easily seen, and a surrounding con-
text region at lower magnification, so that a general, high-
level structure of the data is seen, providing user orienta-
tion. In the past, Focus + Context techniques have been
based on geometric zooming techniques, such as the fish-
eye lens, hyperbolic browser, and perspective wall [1]. We
present an alternate method of performing Focus + Context
called smooth structural zooming, where context information
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Figure 1: Part of the
Mine Pump DBT as an
inclusion tree.

Figure 2: Changing a
node arrangement.

is summarised rather than distorted, giving a constant level
of visual complexity during navigation.

We apply this new method to hierarchical tree structures
in software engineering. We use the inclusion layout conven-
tion for displaying trees, as this is useful not only for strictly
hierachical data, but is a good precursor for relational data
which may be grouped according to a cluster hierarchy to
give a clustered graph, such as call graphs and data-flow
diagrams with nodes grouped by module or class. In partic-
ular, we illustrate the method using design behaviour trees
(DBTs) [2], a technique for decreasing errors in the design
and implementation of large software systems. Other tree-
based data which the smooth structural zooming technique
is suited to include the inheritance trees of object-oriented
programming languages, and tree data structures, as may
be used, for example, in interactive debuggers.

2. INCLUSION LAYOUT
The inclusion tree layout convention [3] is an alternate

method of drawing trees where the parent–child relationship
is visually represented by the child node being completely
contained within the parent node. For simplicity, nodes are
usually drawn as rectangles. A typical DBT is shown using
the inclusion layout convention in Figure 1. This DBT de-
scribes the operation of a software system controlling a water
pump in a mine. Inclusion trees are similar to treemaps [4],
except treemaps generally have no margins around nodes
and have some statistical data associated with the nodes.

Finding an inclusion layout for a tree is achieved by solv-
ing the Minimum Inclusion Layout Problem (MILP) [3] for
each node, working upwards from the leaves. MILP is in
fact NP-hard [5], however, we avoid this by allowing only
two possible arrangments of the children of a node, hori-
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zontal and vertical, as seen in Figure 2, called h–v arrange-
ments. In this restricted case of h–v arrangements (and
integer node dimensions), we use a dynamic programming
approach which solves MILP in polynomial time [3]. We
define the ‘size’ of a node as the minimum enclosing square,
as this appears to give good results empirically [7].

3. NAVIGATION TECHNIQUE
We say that a visualization has an intrinsic level of detail

(or simply ‘detail’), indicating the amount of data present,
and a level of visual complexity (or simply ‘visual complex-
ity’) indicates how many visual elements or attributes are
being used to present this data. Different visualizations of
the same data at the same level of detail may have different
visual complexities, however, we consider the visual com-
plexity of a higher detail visualization to always be greater
than that of any lower detail visualization.

Our goal is a system which maintains an approximately
constant level of visual complexity, while allowing the user
to visualize and navigate inclusion trees that would ordi-
narily require a much higher visual complexity. Note that
distortion techniques, such as the fish-eye lens, have higher
visual complexity — rather than drawing the context data
in a distorted fashion, it’s better to summarise that context
data, which gives a lower visual complexity.

The user has two detail-increasing operations available:
• expanding a node, revealing its child nodes and in-

creasing its size to accomodate these children, and
• zooming out a level, allowing the user to see parts of

the tree previously obscured by zooming in.
The system maintains the number of leaf and collapsed nodes
visible as its detail measure. If it determines that this has
risen unacceptably high as a result of user operations, it
has two detail-decreasing operations available which it can
perform in response to the user’s stimulus:
• collapsing a node, hiding its children and returning to

its original size, and
• zooming in a level, obscuring outer regions of the tree

(containing collapsed nodes), allowing the user to con-
centrate on the central region of expanded nodes.

The response of the system to zooming out cannot include
zooming in (as this would be idempotent), but may include
the collapsing of any nodes. The response of the system
to the expanding of a node cannot include the collapsing of
that node or any of its ancestors, but may include collapsing
of any other node and may include zooming in one or more
levels. In addition, the user can choose to perform either of
the detail-decreasing operations directly.

For these detail-reducing operations, the system must de-
cide which nodes to collapse (if any), and how many levels
to zoom in (if at all). If there are expanded nodes available
to be collapsed, the system will consult a queue of nodes in
order to find the least recently used (LRU) nodes. As many
nodes are removed from the queue and collapsed as is nec-
essary to reduce the detail to an acceptable level. After a
node is expanded it is added to the end of the queue and its
ancestors are moved to the end of the queue (in order), so
that deeper nodes are considered first for collapsing. How-
ever, if there are no nodes available for collapsing (that is,
all expanded nodes are ancestors of the currently expand-
ing node) then zooming in is the only recourse, and so the
system zooms in as many levels are necessary to sufficiently
reduce the detail.

The transitions between different views are smoothly ani-
mated in order to preserve the user’s mental map. Expand-
ing and collapsing of nodes, as well as zooming in and out,
are performed by simple linear interpolation of the node size
and display clipping rectangle, respectively.

As the user changes their view of the visualization its lay-
out must be updated in order to maintain the its quality.
Since the system keeps the number of visible nodes con-
stant, the new layout may be found simply by rerunning the
layout algorithm. When zoomed in, only the layout of the
inner visible region is updated and the layout of the outer
obscured region remains fixed. This helps to preserve the
user’s mental map by preventing changes to hidden parts of
the visualization.

Adjusting the layout requires changing the arrangement
of one or more nodes from horizontal to vertical, or vice-
versa. This is achieved by “rotating” the children nodes
about the center of the node in question, as illustrated in
Figure 2. Our system uses the orthogonal strategy of rota-
tion, which interpolates the positions of the children along a
“Manhattan path”. Sometimes the system may need to per-
form more than one operation, in which case it must choose
which animations will be performed consecutively and which
will be performed concurrently. In general this is non-trivial,
however as our system has a maximum of three possible an-
imations it simply performs all animations concurrently.

An accompanying video [9] shows the animations used by
the system on the Mine Pump DBT from Figure 1. It shows
a typical navigation through the DBT, illustrating the main
features of the smooth structural zooming system.
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