Managing the APAC NF Altix cluster

Kevin Pulo
APAC National Facility,
ANU Supercomputer Facility,
Australian National University,
ACT, Australia, 0200.
Email: kevin.pulo@anu.edu.au

Abstract

The APAC National Facility has set system manage-
ment goals of providing an environmant that allows
consistent, high performance for all jobs while main-
taining very high utilisation. The Facility’s newly in-
stalled SGI Altix cluster presents a number of chal-
lenges in terms of achieving these goals. At a mini-
mum the topology of a cluster of large NUMA SMP
nodes must be respected in scheduling and job place-
ment decisions. Even more challenging has been the
requirement to overcome deficiencies and limitations
in the proprietary, closed source MPI job launch used
on Altix clusters.

In this paper we present the techniques and poli-
cies implemented by APAC NF on this system to en-
sure consistently good performance under this diverse
and competitive workload. This includes issues en-
countered in the PBS-based batch queueing system,
the SGI MPT-based MPI system and general system
configuration and admistration.

1 Introduction

In April 2004, the Australian Federal Government an-
nounced funding of $29m for the next stage of APAC.
SGI won the tender to replace the 5-year-old APAC
National Facility (NF) “SC” system with an Altix 3700
Bx2 cluster. This new system has a Non-Uniform
Memory Access (NUMA) architecture, which is sig-
nificantly different to the previously Uniform Memory
Access systems at APAC NF. As such, APAC NF has
invested substantial development effort into ensuring
that this system is of sufficiently high quality.

1.1 System details

The system is an Altix 3700 Bx2 with a total of 1680
64-bit Intel Itanium 2 1.6 GHz processors, 3.6 Tb of
memory, 120 Tb of storage and Brocade 24000 fibre
channel switches. The SGI NUMAlink 4 interconnect
is used for high-speed, low-latency transfer within the
system, with an additional Gigabit Ethernet “manage-
ment” network. The individual hosts (or “partitions”,
in SGI terminology) consist of 16 NUMA nodes each,
where a NUMA node consists of 2 CPUs, a 4 or 8 Gb

memory node, and a shared memory bus (“SHUB”).
Thus, each host has 32 CPUs and 16 memory nodes
(64 or 128 Gb). NUMAlink is used as the intercon-
nect between NUMA nodes both within each partition
and between them. There are 52 compute hosts (ac1-
ach?2), along with a 4 NUMA node interactive login
front-end host (ac) and a 4 NUMA node test host. The
overall system is referred to as “AC” (“Altix Cluster”).
It ranked 26th on the recently announced 25th Top500
list [1] with LINPACK performance of 8974 GFlops.

30Tb of global storage is available to all partitions
using SGI’s CXFS clustered filesystem, and a further
70Tb is divided locally amongst the partitions using
dual fibre-channel.

The operating system is SUSE Linux Enterprise
Server (SLES) 9, with SGI ProPack 4.

1.2 Motivation

The APAC NF operates with a large user-base of over
700 users in over 200 distinct projects, and as such,
experiences a widely diverse workload. Compute cy-
cles on the systems are offered under a competitive
grant system, and on previous systems it is possible
for job queues to be very long (for example, several
thousand CPU hours on a 500 CPU machine). Thus,
it is important for users to obtain repeatable and con-
sistent benchmark results, in order to effectively plan
the use of their grants. APAC NF uses the walltime
of jobs, rather than the CPU time, as this is the only
effective way to measure the “overall” performance of
the job (particularly in terms of turnaround time for
users). The NUMA architecture of the SGI Altix sys-
tem means that without appropriate controls, perfor-
mance benchmarks can easily vary by 20% between
identical runs due to poor memory placement and “in-
terference” between jobs, and this figure can increase
to as much as 50% for memory bandwidth limited ap-
plications. Clearly, users would be unable to make ef-
ficient use of their grants when the length of their jobs
cannot be predicted with reasonable accuracy. For this
reason, consistent and reproducable performance is of
extremely high priority (perhaps even more so than
good performance).

The main difference with a NUMA architecture
(compared to SMP) is that memory is divided into

memory nodes. Each memory node is associated with
a NUMA node, and thus, with the 2 CPUs in that node
(on our system). Memory accesses by a CPU may be
local (to addresses in the same NUMA node) or remote
(to addresses in other NUMA nodes). By using direc-
tory based cache coherency [2], local memory accesses
require only the local SHUB, whereas remote accesses
involve other SHUBs and the interconnect. As such,
remote memory accesses incur higher latency than lo-
cal ones. This means that it is desirable for the mem-
ory being used by a thread running on a CPU to be
local to that CPU.

Most NUMA systems allocate pages of memory ac-
cording to the first touch placement strategy, whereby
memory allocated by a process executing on a partic-
ular CPU is placed on that CPU’s local memory node.
If the process is later migrated to another CPU, then
accesses to the previously allocated memory become
remote accesses (with the associated penalty). Most
modern NUMA-aware Unix operating systems (includ-
ing Linux) support the dynamic migration of processes
between CPUs (since this is effectively identical to the
SMP case), but do not support the dynamic migra-
tion of pages between memory nodes. The two most
common other memory placement strategies are round-
robin and random, both of which effectively reduce the
NUMA system to the UMA case. However, the hard-
ware cache coherency used in SGI Altix systems is such
that these page placement strategies are not feasible.

In the absence of any controlling mechanisms, the
memory layout of an application running on a fully-
loaded host in the cluster depends entirely on the par-
ticular CPU and memory load of the host during the
lifetime of the application. Clearly, in this situation
one expects that only very rarely will applications have
significant fractions of their pages in local memory, and
have no other applications remotely using their local
memory node (which, of course, reduces the SHUB
bandwidth available to the local application). This
is the source of the unpredictable (and therefore unre-
peatable) performance on unmanaged NUMA systems.

1.3 cpusets

One way to deal with this problem is to set the kernel-
level CPU and memory node affinity of a process. SGI
provide a utility known as dplace for achieving this.
However, the problem with affinity is that it is a recom-
mendation for the kernel, and the kernel may violate
it when it deems necessary.

A Dbetter solution is to use what are known as
cpusets. A cpuset is a subset of the CPUs and mem-
ory nodes in a NUMA system. The list of CPUs and
memory nodes is expressed as a comma-separated list
of ranges, for example, 0-3,11,13,15. cpusets are
“hard”, in the sense that a process in a cpuset can-
not use CPUs or memory nodes that are not listed
in the cpuset. A cpuset may have sub-cpusets, thus,
the system has a hierarchical tree of cpusets. A sub-
cpuset may only use CPUs and memory nodes that
are listed by its parent cpuset. This allows for an eas-

ier, more natural partitioning of the system. A filesys-
tem metaphor is used for cpusets, with the root cpuset
named / and containing all the CPUs and memory
nodes in the sytem. In fact, cpusets are implemented in
Linux using a virtual filesystem (vfs), usually mounted
at /dev/cpuset. In this filesystem, a directory cor-
responds to a cpuset, and each file corresponds to a
property of the cpuset that may be read or set. This
also has the significant advantage of utilising the stan-
dard filesystem permissions model to control access to
cpusets and their properties.
The main properties a cpuset has are:

e CPU list and memory node list

— Controls which CPUs and memory nodes
may be used by processes in this cpuset.

— The CPU and memory node lists of child
cpusets must be subsets of their parent’s.

e CPU and memory node exclusivity flag

— If set, the CPUs and memory nodes in the
cpuset may not be shared with any other
cpuset (except ancestor cpusets).

— Can only be set if the sibling cpusets are also
CPU or memory node exclusive.

o Tagk (process) list

— Lists the process IDs of processes in the
cpuset.

— Every process must be in exactly one cpuset.

— Child processes inherit the cpuset of their
parent.

— The system init process may be in the /
cpuset, or may be placed into a /boot cpuset,
so that system daemons (and the like) may
be separated from other processes.

e Destroy on release

— Controls whether or not the cpuset will be
removed when the last process in it exits.

Since cpusets are implemented using a virtual filesys-
tem, they are very easily manipulated, either program-
matically with normal file IO operations, or manually
using the shell. For example, a typical shell session
may be

cd /dev/cpuset

cat cpus

0-7

cat mems

0-3

mkdir half

cd half

/bin/echo 0-3 > cpus
/bin/echo 0-1 > mems
cat cpus

0-3

cat mems

0-1

/bin/echo 24652 > tasks
/bin/echo 24653 > tasks
cat tasks

24652

24653

#

This creates a new cpuset called half, which consists
of the first 4 CPUs and 2 memory nodes of an 8 CPU,
4 memory node system, and then moves the processes
with pids 24652 and 24653 into this cpuset. (The
command /bin/echo is used because the bash “echo”
builtin does not report errors correctly.) The cpuset a
particular process belongs to can be found by querying
the cpuset file within the process’s /proc entry, i.e.

cat /proc/24652/cpuset
/half
#

Thus, cpusets are an ideal way to separate batch jobs
from one another when they are running on the same
host. The batch queueing system is modified to create
a cpuset for the job at startup, with the correct CPUs
and memory nodes, and places the initial job process
into this cpuset. These cpusets are not CPU or mem-
ory node exclusive, which allows a job to share CPUs
and memory nodes with suspended jobs. Limited per-
missions are given to the user of the job, namely, they
own the cpuset directory (allowing them to create sub-
cpusets) and the tasks file (allowing them to move pro-
cesses between sub-cpusets and the main job cpuset).

2 Batch-queueing issues

Over a number of years, APAC NF has developed a
unique batch scheduling system to support the diverse
workload presented by the userbase. It is based on
OpenPBS [3] with numerous enhancements to support
the following features:

e Tight control by the PBS system of all user pro-
cesses running on the compute nodes.

e Detailed resource requests, allocations and limit-
ing.

e A model of suspending some jobs to run others.
Generally multiple jobs each using a small number
of CPUs are suspended to run a job requesting
a larger number of CPUs, but preemption may
happen in other circumstances as well (e.g. high
priority queues).

e An “equal access” scheduler to ensure that no us-
age group is disadvantaged, e.g. jobs cannot be
suspended indefinitely.

e Maintain high system utilisation while still allow-
ing large parallel jobs to run easily (mixing “capa-
bility usage” with “capacity usage”).

e Minimise inter-job interactions as much as is pos-
sible.

e Provide as repeatable performance as possible,
and as high performance as possible, in the face
of full system utilisation.

Until now, this development occurred on more tradi-
tional clusters with smaller SMP nodes. The following
modifcations have been prompted by features of the
SGI Altix system (specifically, large CPU count SMP
nodes (up to 512 CPUs), NUMA nodes with two CPUs,
and fairly complex network hierarchy and locality at
multiple scales, both within and between SMP nodes).

e PBS can be dynamically configured to hold spec-
ified CPUs free for system activity and daemons.
A common cause of performance degradation of
large tightly coupled parallel jobs is the unsyn-
chronised perturbations to CPU access from sys-
tem load. AC is currently configured with the
first CPU on each partition as a “system” CPU. If
a user requires all CPUs of a partition (for a large
threaded application), that CPU can be dynami-
cally configured in.

e The scheduler collects memory resource informa-
tion down to the NUMA node level, both for what
is physically available and for what each job is us-
ing on each NUMA node. This ensures that, even
in the presence of cpusets, memory is not oversub-
scribed leading to excessive paging. PBS uses a
job attribute called the exechost to specify where
the job is executed, and this has been generalised
to incorporate NUMA node information.

e As mentioned in Section [[L3 all jobs are placed in
cpusets consisting of the CPUs and memory nodes
assigned to the job by the scheduler. Jobs with
small memory requirements (less per CPU than
physically available) are given memory nodes cor-
responding to the NUMA nodes of the CPUs allo-
cated to the job. Larger memory jobs are given a
broader memory footprint but only such that they
share memory nodes with jobs of a small number
of CPUs (actually, jobs within the same subnode,
as described below). The non-exclusivity of mem-
ory nodes is necessary even for running jobs in this
case. Large memory jobs do not share memory
nodes with large parallel jobs (currently, a “large
parallel job” is one of more than 8 CPUs). To
avoid another perturbation to parallel scalability,
large parallel jobs never share memory nodes.

e Where possible, jobs are NUMA node aligned so
as to minimise job interaction, i.e. jobs of an
even number of CPUs are allocated whole NUMA
nodes.

e Like many networks, the NUMAlink network is
based on a quad-tree. Given that the base NUMA
node contains two CPUs, there is a hierachy of
building blocks of 8, 32, 128 and 512 CPUs. By

employing a metric that reflects this topological
hierachy, the scheduler is able to localise job place-
ment. The APAC NF scheduler employs a scor-
ing system with cutoffs to decide which jobs can
suspend which others under what circumstances.
On the Altix system, these scores are modified to
include a contribution describing the spread of a
job in this metric. The score cutoffs are set such
that jobs are reasonably localised in the network
hierachy.

e To avoid fragmentation and to respect the inter-
connect topology (even within a host), the sched-
uler actually allocates CPUs to large parallel jobs
in units of the fundamental 8-CPU (4 NUMA
node) building blocks referred to here as subnodes.
In many respects, subnodes take the place of hosts
in scheduling:

— They can be given scheduling properties to
limit what sort of jobs they can run (e.g.
singlecpu, onlyparallel, ...).

— Queues can be targetted to only use certain
subnodes.

— Subnodes can be individually drained and
taken offline.

— Memory resources for jobs with overlapping
memory nodes are constrained to within a
subnode.

Large parallel shared memory jobs (e.g. OpenMP
jobs) requiring over 8 CPUs are also allocated
subnodes, but are, of course, restricted to a single
host.

One of the advantages large SMP offers in the pres-
ence of job of suspension is job migration. Suspended
jobs can, theoretically, be resumed on different CPUs
when those CPUs become free. This can decrease the
fraction of jobs that are suspended and provide better
utilisation of the system. As pointed out in Section[[2,
although the threads of a job will migrate, Linux does
not support migrating pages, so any migrated job will
run suboptimally and interact badly with jobs running
on its original CPUs. SGI have developed a manual
page migration system call and user level utility for
Linux that can be invoked by resource management
systems to overcome this. One constraint on these is
that the process being migrated must be suspended at
the time — but that is exactly the scheduling scenario
for job migration.

A number of issues arise from the underlying XP-
MEM mechanism that supports SGI’s MPI (see next
section). XPMEM pages are process pages pinned in
memory to be used as message passing buffers. For ap-
plications which communicate a large fraction of their
memory (e.g. FFT based applications), this can mean
that much of the job’s memory cannot be paged. Job
suspension in APAC NF’s PBS assumes that processes
of suspended jobs can be paged out to free memory
for the new job. SGI have provided a manual /proc

based mechanism for unpinning these pages during job
suspension. Note that XPMEM page unpinning is also
a prerequisite for job migration.

The other issue arising from XPMEM is the diffi-
culty of quantifying the memory use of a job. Previ-
ously, APAC NF’s PBS has used the virtual memory
summed over the jobs processes, taking into account
that some virtual memory maps are shared between
processes. However, for an N CPU XPMEM based job,
there are around N2 large (usually 2 GB) and generally
very sparsely populated virtual memory maps, leading
to a meaningless virtual memory sum. We have de-
veloped a heuristic for evaluating job virtual memory
that ignores these maps. We have also implemented an
accurate physical memory use counter for jobs. This
counter ensures that all pages attributed to the job
are only counted once, and also includes swapped out
pages in the count. Since it has to walk the page tables
of all job processes, it can be rather expensive and its
usage is somewhat limited as yet.

3 MPI issues

The Message Passing Interface, more commonly
known as MPI [4], is the defacto standard for dis-
tributed memory applications. It is very widely used,
and all the distributed memory applications in use on
the NF’s facilities make use of it, including both com-
mercial scientific applications and “home-grown” code
written by users. Two prevalent freely available MPI
implementations are MPICH [5] and LAM [6, [7], both
of which are in use on the NF’s Linux Cluster (LC).

MPI systems typically require the use of a spe-
cialised launcher to start MPI-enabled programs. This
launcher initialises the computing environment, includ-
ing the network, starting the necessary instances of the
MPI program on the appropriate hosts in the cluster,
and so on. MPT launchers are most frequently named
mpirun, or sometimes prun.

3.1 MPT launcher operation

SGI’s implementation of MPI which accompanies its
Altix systems is known as the Message Passing Toolkit
(MPT). MPT is a proprietary, closed-source MPI
system that provides support for the use of high-
speed interconnects with MPI, such as Infiniband and
SGI’'s NUMAIlink. We refer to the MPT launcher as
sgimpirun.

The MPT MPI implementation is somewhat ar-
cane, in that it uses a relatively different launching
method, compared to other MPI implementations such
as MPICH and LAM. Frequently, MPI launchers make
use of the rsh (or, equivalently, ssh) system tool to
start the MPI processes on the necessary hosts. MPT
makes use of another proprietary SGI software pack-
age known as Array Services (AS) to start the MPI
processes. An array services daemon, arrayd, runs as
root on each host in the cluster, and is configured to be
aware of the other hosts in the cluster. arrayd listens

on a standard TCP port and a Unix domain socket,
and responds to both user and remote arrayd requests
on these sockets.

sgimpirun accepts command line parameters in a
variety of forms. The exact specification of the MPI
job on the command line affects the way in which the
job is started. The most notable forms are:

1. sgimpirun -np n a.out
where n is the number of MPI processes desired,
and a.out is the name of the MPI program.

2. sgimpirun hostl,host2,... -np n a.out
As above, except that n MPI processes will be
started on each of the hosts listed.

3. sgimpirun hostl,host2,... -np n a.out

host3,host4,... -np m b.out

In this case, n instances of the a.out MPI program
will be started on each of hostl, host2, and so
on, while m instances of b.out will be started
on host8, host4, and so on. This syntax allows
the use of the Multiple Program, Multiple Data
(MPMD) paradigm of distributed computing,
rather than the less flexible Single Program,
Multiple Data (SPMD) paradigm, as in the
previous command line forms.

Note that, if hostnames are specified, the “-np” option
may be omitted. This permits command lines such as

sgimpirun hostl n a.out host2 m

b.out

The use of this “feature” is strongly discouraged, as it
introduces ambiguity (specifically, the inability of the
MPI launcher to distinguish between an n parameter
which is intended to be the number of processes (i.e.
“-np”), and an MPI program that happens to be named
as an integer. The use of “-np” rather than the more
common “-n” is non-standard enough, but omitting it
completely makes scripts that call sgimpirun in this
way even less portable.

There are two ways in which sgimpirun can spawn
the actual MPI processes. If no hostnames are specified
on the command line (such as in the first form listed
above), then sgimpirun will directly spawn the MPI
processes, that is, by using the fork() and execve()
system calls. In this case, the parent process of the
MPI processes is the sgimpirun process, and the MPI
processes inherit various aspects of its environment
(such as environment variables, rlimits and group id
(gid)).

By contrast, if hostnames are present on the com-
mand line, then sgimpirun will use array services to
spawn the MPI processes. In this case, the parent pro-
cess of the MPI processes is the arrayd process, and as
such, the environment inherited by the child MPI pro-
cesses is that of the arrayd process. While array ser-
vices ensures that most of the sgimpirun environment
is reproduced by arrayd prior to executing the MPI
processes, however, there are three notable and unfor-
tunate exceptions. The first is that arrayd modifies

the value of the PATH environment variable, resetting
it to a “safe” default of

/usr/sbin:/usr/bsd:/sbin:/usr/bin:
/usr/bin/X11:/bin:

While resetting the PATH in this way is a prudent se-
curity practice for daemons that execute priviledged
commands on behalf of users, it does not make sense
for an MPI launcher. The second problem is that the
gid (group id) of the MPI processes does not necessar-
ily match that of the sgimpirun process. Specifically,
if a user belongs to several groups, and has used a com-
mand such as newgrp to change into another group, the
MPI processes are started by arrayd with the user’s
default gid. This is clearly an oversight — after fork-
ing, arrayd calls setuid() to change the uid to the
user, but simply neglects to call setgid(), since both
the uid and gid of sgimpirun are passed to arrayd.
Finally, when arrayd runs the user process, it does so
by executing (with execve()) a command of the form

/bin/sh -c "cd cwd
args..."

; exec command

where /bin/sh is the user’s shell, cwd is the current
working directory of the sgimpirun, and every param-
eter is protected from shell interpretation by surround-
ing it with single quotes. If the use of cpusets has been
enabled using the RM API (see below), then this com-
mand takes the slightly different form

/bin/sh -c "cd cwd ; exec
/usr/bin/cpuset -i cpuset -I command
-- args..."

where cpuset is the cpuset to place the MPI processes
into. Since this spawning involves the user’s shell, it
has the potentially unfortunate side-effect of upset-
ting the user environment if shell initialisation files are
sourced. For example, tcsh always reads the user’s
~/ .cshrc file on startup. A better solution would be
for the arrayd to simply call chdir (), followed by di-
rectly exec()ing the necessary cpuset (or user) com-
mand.

sgimpirun also uses array services to negotiate a
unique Array Session Handle (ASH) for the MPT job.
This is a 64-bit value (usually represented in hex)
which is unique for the lifetime of the job across the
cluster. The ASH of a process is inherited by its child
processes, and setting or changing the ASH of a pro-
cess requires root priviledges. This ensures that the
ASH identifies all the processes relating to that job.
The ASH is set for the sgimpirun itself, as well as any
MPI processes started by arrayd. (This means that
sgimpirun always requires arrayd to be running, even
when sgimpirun directly spawns the MPI processes.)
This ASH can then be used to control all the processes
in the MPT job, for example, to send signals, determine
process ids, and so on. This can be done from the com-
mand line using the array command, or by linking to
the libarray dynamic library.

The actual startup procedure of the MPI pro-
cesses themselves is the same regardless of whether

sgimpirun has spawned them directly or with array
services. One MPI process is spawned on each host
(and if multiple programs have been specified, then one
for each program), and this process is known as a shep-
herd process. MPI programs are dynamically linked at
compile time against the MPT libmpi shared library
(i.e. users specify -1mpi at compilation). A substantial
amount of initialisation occurs at the run-time loading
of this dynamic library. If a user runs an MPI pro-
gram without using sgimpirun, then when the code
reaches the MPI_Init () function, a simple error mes-
sage is output (“mpirun must be used to launch all MPI
applications”). sgimpirun notifies the MPI processes
that they are being run within the MPI launcher by
setting two environment variables, MPI_ENVIRONMENT
and MPI2_ENVIRONMENT. Typical values for these vari-
ables are

MPI_ENVIRONMENT="51c8a8c0 49757 0"
MPI2_ENVIRONMENT="1 O O"

The value in MPI_ENVIRONMENT specifies the host and
port that the shepherd is to connect to in order to
communicate with sgimpirun. The first value is the
little-endian hex encoded IP address (i.e. in this case,
192.168.200.81), and the second value is the port. The
sgimpirun has created and is listening on this socket
prior to spawning the shepherd processes. sgimpirun
closes this socket once the correct number of shepherds
have connected to it, and all communication between
sgimpirun and the shepherds occurs over this connec-
tion (for example, the standard output and error of the
MPI processes is sent back to the sgimpirun process
for output to the user). Once the shepherd process has
connected to the sgimpirun, it is able to determine
how many MPI processes should be started on that
particular host. These MPI processes are then started
by the shepherd, which does so by calling fork Ofl from
inside the dynamic library initialisation code. This is
not followed by a call to execve() — the actual MPI
processes continue through the rest of the 1ibmpi ini-
tialisation, where they block until they receive notifi-
cation from the sgimpirun that all of the MPI pro-
cesses have been created. Following this, they finish
the 1ibmpi initialisation and continue into user code.
They block at the implicit barrier in MPI_Init (), but
otherwise, they are free to run without restriction.

3.2 NF Requirements

There are a number of requirements that an MPI
launcher must fulfill in order to be useful on the AC.
These are (in decreasing order of importance)

1. Interface with the batch queueing system, both
to determine the resources within the cluster that
are available to an MPI job, and so that the batch
system may record accounting information about
the MPI job. Users must not be permitted to

In fact, the shepherd directly calls the Linux-specific
clone() system call, rather than fork() or the clone() libc
library function.

make use of resources that have not been reserved
by the batch queueing system. The batch system
must be notified of all the processes involved in
the MPT job, so that it can monitor the resources
used and record this at the completion of the job.

2. Allow MPI programs to be run interactively (with
a limited amount of resources), as well as within
the batch queueing system. This facilitates the
development and debugging of code.

3. All processes (including MPT processes) of all jobs
should be contained within a job cpuset (one for
each host allocated to the job). This inhibits MPI
processes from interfering with other jobs on the
system by allocating cpus or memory from NUMA
nodes not assigned to the job.

4. Each MPI process (rank) should optionally be
placed into its own sub-cpuset. This allows MPI
processes to maintain optimal page placement lo-
cality even in the presence of suspended jobs. Sus-
pended jobs filling the memory of some NUMA
nodes might otherwise lead to the running job al-
locating pages on remote NUMA nodes. The use
of sub-cpusets may cause some short-term paging
of suspended jobs but helps to repeatably provide
highest performance for long running jobs.

5. Run non-MPI programs, such as shell-scripts.
This is useful for tasks such as the staging-in of
input files prior to the “actual” MPI job (and the
staging-out of output files), and so forth.

6. The user environment at the time of running the
MPI launcher should be replicated in the environ-
ment of the MPI processes. Apart from being a
consistency that users reasonably expect, it also
allows, for example, user limits that are set at lo-
gin to continue to apply to any subsequent MPI
processes.

7. Ideally, the launcher should be as backward-
compatible with existing commonly found mpirun
and prun command line options.

Clearly, sgimpirun does not meet most of these re-
quirements.

1. sgimpirun does not interface with any batch
queueing system. Furthermore, the way MPI pro-
cess startup occurs within the libmpi dynamic
library initilisation means that it is not very fea-
sible to “shoehorn” communication with the batch
queueing system at the time of MPI process cre-
ation. The way that sgimpirun allows users
to specify hostnames, and does not use cpusets,
means that there is no possible way to restrict the
resources available to users. Also, there is no way
for the batch queueing system to be aware of MPI
processes started by arrayd on other hosts in the
cluster. Even MPI processes on the same host as
the sgimpirun are difficult to track, since they

have arrayd as their parent process, and the only
possibility is to use the ASH of the MPI job to
find the processes.

2. sgimpirun can certainly be run interactively as
well as in batch jobs, but there is no way to limit
the amount of resources.

3. sgimpirun does not use cpusets at all. If the
sgimpirun is executed within a particular cpuset,
and no hostnames are specified on the command
line, then the MPI processes will also be in that
cpuset. But if arrayd is used to start the MPI
processes (either on the same host or other hosts
in the cluster), then these MPI processes will be in
whatever cpuset the arrayd is running in. There
is no way to specify the cpuset to use on the com-
mand line to sgimpirun (despite the RM API sup-
porting it, as described below). Even if cpusets
were supported, there is no support for placing
each individual MPI process into its own “fine-
grained” cpuset. To see why this is important,
Figure [l shows an example of how remote mem-
ory accesses can occur when MPI processes are
not restricted with cpusets, and how fine-grained
cpusets improve the situation.

4. sgimpirun is unable to run non-MPI programs. If
the program specified is not linked against 1ibmpi,
it will report an error. However, the program
will be run on each host, and MPT only realises
that it is not an MPI program when it terminates
without having connected to sgimpirun on the
socket specified by the MPT_ENVIRONMENT variable.
This is a serious problem, as the non-MPI pro-
gram or script may attempt tasks such as manip-
ulating files, and may expect to be run n times,
rather than just once (per host). Worse still is
that if hostnames are specified to sgimpirun, the
stdout and stderr of the non-MPI program may
be lost by arrayd. arrayd redirects stdout and
stderr to an error file in /tmp/.arraysvcs, but
the contents of this file are not always reported
back to sgimpirunE. This means that it is en-
tirely possible for the non-MPI program to run
to completion (success or error), without any out-
put (normal or error) being reported to the user.
This is not the case if no hostnames are specified
— since sgimpirun directly spawns the MPI pro-
cesses, they retain the sgimpirun’s stdout and
stderr.

5. sgimpirun uses arrayd to spawn MPI processes,
which has the known problem with the PATH en-
vironment variable and the gids of the processes,

21t is not clear exactly why this is so. In addition, if two dif-
ferent MPI programs are specified on one host (i.e. sgimpirun
hosta -np n a.out : hosta -np m b.out), then the same er-
ror file is used for both, and it is truncated when opened. This
means that the output from the first shepherd will be lost when
the second is started, and following that, the output from both
will be mixed in the file.

cpus| 0|1 (2|3 (4 |5|6 |7
mems 0 1 2 3

cpus
mems 0 1 2 3

swap

(b) Job a: 4 CPUs, 6 Gb

cpus| 0|1 (2|3 (4|5|6 |7

mems 2 3

swap

(c) Suspension of job «

cpus| 0|1 (2|3 (4 |5|6 |7
mems A&ﬂ
swap

(d) Remote memory used by job 3

cpus| 0|1 (2|34 |5|6 |7

% %L 2 3

mems

swap

(e) Job «a partially swapped

Figure 1: An example of the necessity of fine-grained
cpusets for MPT jobs. Consider an 8 CPU, 16 Gb sys-
tem (4 Gb per NUMA node, 2 Gb per CPU), shown
in (a). A job « is run using 4 CPUs (0-3) and 6 Gb
(75% of memory nodes 0-1), shown in (b). A second
job, (3, is now run using 8 CPUs and 8 Gb. This causes
a to be suspended, shown in (c). The (3 processes run-
ning on CPUs 4-7 can fit the required 2 Gb into their
local memory. However, memory nodes 0 and 1 each
have only 1 Gb free (due to «), thus, half the memory
used by 3 on CPUs 0-3 is remotely located on memory
nodes 2 and 3, as shown in (d). The preferred situation
would be to constrain each process to only the CPU
and memory node it requires. This would force 1 Gb
of job a to be swapped out of memory nodes 0 and 1,
allowing all the memory for job 3 to be local.

as described above. Neither of these problems oc-
cur when sgimpirun directly spawns the MPI pro-
cesses. The PATH issue causes obvious problems,
where MPI programs may not be found when
sgimpirun attempts to run them, despite being
found by the shell from which the sgimpirun com-
mand is run. The gid issue causes problems with
the APAC NF setup because users belong to mul-
tiple groups; their primary group is for their home
institution, but all processes are set to run under
a project group, of which a user may belong to
several. To ensure that disk space used by users
can be attributed to various projects, the filesys-
tem quotas for the institution groups are set to no
blocks or inoded. If MPI processes are allowed to
run with the user’s primary gid, they will not be
able to output to files, even though the gid of the
sgimpirun has been correctly set by the login or
batch job setup.

6. The command line syntax for sgimpirun is not
compatible with existing (eg. MPICH) mpirun
MPI launchers. In particular, the most common
option, -n, is -np in sgimpirun. This means that
even the most trivial of batch scripts (e.g. mpirun
-n 4 a.out) would need to be modified.

3.3 Method

The limitations of sgimpirun described in the previ-
ous section are, for APAC NF, serious enough that
sgimpirun is unusable for our purposes. Since MPT is
closed-source software, we were required to overcome
these limitations by writing our own replacement MPI
launcher. This launcher makes use of the RM API, a
dynamic library and corresponding external interface
to the launching mechanisms used by sgimpirun. We
refer to our launcher as anumpirun. The course of its
development has seen it employ several mechanisms for
launching MPI programs with the requirements of Sec-
tion These mechanisms can be grouped into three
“generations” of anumpirun, each of which is now de-
scribed.

3.3.1 First generation

The RM API provides several functions for initialising
and running the MPI job. Using it requires linking
against the libxmpi dynamic library. There are four
important functions:

e MPI_RM_batchargs(): This takes the number of
hosts, the number of processes for each host, and
the name of the cpuset to use on each host.

e MPI_RM_parse(): This takes an argc and argv
pair of parameters, which are parsed for options
using the sgimpirun syntax, an env parameter
which is the environment for the MPI processes,

3 Actually, technical reasons mean that the quotas are 4 blocks
and 1 inode, but this is still effectively a zero quota.

and three file descriptors which are the stdin,
stdout and stderr to use for the MPI processes.

e MPI_RM_sethosts(): This takes an array of the
IP addresses of the hosts to launch the MPI pro-
cesses on. This is where the bulk of the work is
done: the RM API contacts the arrayd to start
the processes on the correct hosts and when this
function call returns, all of the MPI processes will
have been started and are being held. It is possi-
ble at this point to obtain the process IDs of the
MPI processes on each host.

e MPI_RM_go(): This takes no arguments, and it re-
leases the MPI processes to run. It does not return
until the MPI processes have completed (either
successfully or with an error).

The operation of anumpirun is simple in concept,
and follows these steps:

1. The command line is parsed to determine the
number of processes, options, and MPI program
command line. If anumpirun is running within a
batch job, this is detected and the resources allo-
cated to the job are obtained.

2. MPI_RM_batchargs() is called with the appropri-
ate number of hosts and processes. The cpuset
used is the current cpuset of anumpirun, with an
additional mpi sub-cpuset if one exists.

3. A “fake” command line in the sgimpirun syntax is
constructed and passed to MPI_RM_parse (), along
with the current environment (i.e. environ) and
the current stdin, stdout and stderr.

4. MPI_RM_sethosts() is called with the correct
hosts for the batch job, or localhost otherwise.
This creates and holds the MPI processes.

5. The process IDs of the MPI processes on each host
are obtained from RM API.

6. Another instance of anumpirun is executed (us-
ing system()) with the --launch-remote-setup
option and the list of pids.

7. This process then uses the RM API to run a sec-
ondary MPI job on the same hosts as the pri-
mary one. The MPI job run is anumpirun with
the --remote-setup option, along with the list of
pids for that host. The second separate process to
do this is necessary because the RM API assumes
that a process will only launch a single MPI jokﬂ

8. The remote setup anumpirun is a normal MPI
program (that is, it makes use of MPI_init(),
MPI_Comm_rank(), and so on), and it performs
three tasks on each host:

4This is despite the RM API ostensibly supplying a void*
“mpi_handle”. It also suggests that the RM API is probably
not thread-safe.

(a) Informs the batch queueing daemon on that
node of the pids which belong to the MPI
job.

(b) Creates a fine-grained sub-cpuset for each
MPT process and evenly divides the cpus and
mems amongst them.

(c¢) Places each MPI process into its respective
fine-grained sub-cpuset.

9. After the remote setup has completed successfully,
MPI_RM_go() is called to allow the MPI job to run.

When anumpirun is run, it detects if the MPI pro-
gram specified is an “MPI program” or not. This
is acheived with the ismpi shell script, which uses
1dd to determine if the program is linked against
libmpi, and, if so, confirms that it is the MPT
libmpi. If a program is found to be a non-
MPI program, then anumpirun uses an internal
MPI wrapper to run the non-MPI program (this is
acheived by changing the user-specified MPI com-
mand line of command parameters to be anumpirun
--mpi-wrapper command parameters). This wrap-
per is very simple — it obtains the MPI rank and size
in the usual way, sets the MPT_RANK and MPI_SIZE en-
vironment variables, and then exec()s the non-MPI
command line. The user is able to force anumpirun to
interpret a program as an MPI program with the -w
option, and force it to be a non-MPI program with -W.
Special exceptions exist for the profiling and debugging
programs profile.pl, histx and strace, which are
known to be non-MPI programs and cause anumpirun
to run ismpi on the actual MPI command, rather than
running it on profile.pl, histx or strace.

anumpirun does not require the user to specify the
-n option. In this case, when run in a batch job
anumpirun will determine the maximum number of
CPUs allocated to the job and use that as the -n op-
tion. The user may override this and specify a lower
number of processes to use, in which case a warning is
printed. The user cannot ask for more processes than
CPUs, unless the -0 (overcommit) option is specified.
In this case, no more CPUs are used, but more pro-
cesses are allowed, which is sometimes useful when it
is known that some processes will remain idle for large
periods of time. When running interactively (i.e. out-
side a batch job), the default for -n is 1, and the upper
limit is the number of CPUs in the mpi cpuset. On the
interactive login node of the AC, this is 8 CPUs.

Every invocation of anumpirun by a user is logged to
a world-writable file. The information recorded is the
time, hostname, process id, user id, batch job id, work-
ing directory, full command line, exit status and the
location of the error that caused anumpirun to exit, if
any. This information is very useful in tracking down
bugs (particularly with several commercial packages,
where mpirun is not run directly, but is executed by
another (possibly binary only) program), and in mon-
itoring the system to ensure that there are not many
errors occurring.

Before calling the RM API, anumpirun sets the
MPI_DSM_CPULIST environment variable. This is used
to specify to MPT the initial placement of the MPI
processes onto CPU4. This is achieved by setting the
CPU affinity of the processes, and as such, the pro-
cesses may later change the CPU they are running on.
Thus, this is simply an extra aid, and does not replace
the use of fine-grained sub-cpusets. This is useful for
ensuring that data structures created by the MPI pro-
cesses on startup are placed onto the local memory
node (through the use of the “first-touch” memory al-
location strategy). This is particularly important for
MPI-related data structures, which can severely im-
pact the MPI performance of the application if they are
not local. Since these data structures are created very
soon after the creation of the MPI process itself, using
this MPT environment variable is the best method.

As mentioned earlier, arrayd has two problems that
interfere with the running of MPI programs: the reset-
ting of the PATH environment variable, and the reset-
ting of the group id. These are overcome by anumpirun
by prepending onto the specified MPI commands the
following:

env PATH='$PATH' nfnewgrp gid env
LD_LIBRARY_PATH='$LD_LIBRARY_PATH'

where the values $PATH and §LD LIBRARY PATH
are replaced with their respective values by anumpirun
(prior to calling the RM API). This first restores the
value of the PATH environment variable. nfnewgrp is
a modified version of the standard newgrp command,
such that its command line syntax is

nfnewgrp gid command args...

This allows it to execute the given command with
execvp(), rather than using execl() and the user’s
shell, which is the case with the standard newgrp com-
mand and causes potential problems with shell quot-
ing. As with newgrp, it is installed setuid-root, since
setgid() can only be called by root (even to change
into a group that a user belongs to). In addition,
nfnewgrp fails if the user does not belong to the target
group, and the target group requires a password. The
final step restores the value of the LD_LIBRARY_PATH
environment variable. This is necessary because the
kernel clears the LD_* environment variables when se-
tuid programs are run, as a security precaution, and if
it is not restored, then many dynamic libraries (such as
the 1ibmpi MPI library itself) may not be found. (In
addition, when running interactively on the AC users’
shells are a setuid-root program for accounting pur-
poses (which subsequently spawns the user’s “actual”
shell, such as bash or tcsh). This is another setuid
program which causes the LD_* environment variables
to be cleared.)

5The MPI_DSM_DISTRIBUTE environment variable is similar,
but simply uses CPUs 0-n. This does not support hybrid ap-
plications that use threading and MPI, where each MPI process
may require more than 1 CPU.

B
&
&
N

8
8] (8]

&
|
&

g

EHRES
& (8]

8
|28
o
w
i
a
o

£] 2]
£]
£]
m
5]18]
4]

B[]

B[R]
&) (2]

B R]
N
BJ1E]
&) (2]
B 1%

£l
&[5
EEY
B (8]

©

2] (%]
(2] 18]

(2] [E]
(2] (8]

Figure 2: Layout of the sub-arrays used. A sub-array
exists for each host (the white boxes labelled from acl
to ac64), for each pair of hosts within the grouping
of 4, and for each group of 4 hosts. This continues
recursively until the array containing the entire cluster
is obtained.

3.3.2 Second generation

The main problem with the first generation anumpirun
was that there would often be problems starting jobs.
These problems are MPT problems, and are directly
related to arrayd. In particular, it is apparent that
arrayd does not scale well. When creating a new ASH
(which must be unique by definition), arrayd must
contact every other host in the array (cluster). This
can cause a large amount of network traffic, especially
since each MPT job required two MPI jobs to be started
(the “actual” MPI job itself and the “remote setup”
job). On a partial subset of 20 hosts of the AC, with
CPU 0 of each host reserved for system daemons such
as arrayd, we found that it was still possible for jobs to
fail to start, most likely based on slow responses from
arrayd. Also, arraydhas the problem that a timeout
of 45 seconds is encountered whenever any host in the
cluster (or rather, when any arrayd) is down. These
timeouts can, on occasion, cause jobs to fail to startup.
Some problems have been observed with arrayd be-
coming deadlocked in futexes, however, we believe that
these bugs have been resolved.

The second generation of anumpirun attempts to
alleviate this problem by reducing the pressure on
arrayd. This is achieved by two main changes:

1. The use of sub-arrays.
2. Avoiding the “remote setup” phase.

The main problem is that arrayd contacts every
host in the cluster, even for a job that involves only a

single host (such as the local host). To avoid this prob-
lem, we use an automatically generated arrayd.conf
configuration file for arrayd. Array services supports
the concept of multiple arrays, with each array being
composed of a separate list of hosts. Our script gener-
ates arrays according to the natural topological hier-
archy of the AC. We start with an array for each host,
and then create an array for each group of 4 hosts, and
an array for each pair of hosts within the grouping of
4. This procedure then recursively continues until an
array is created for the entire cluster. This situation
is shown diagrammatically in Figure] which shows
the groupings used for 64 hosts. For example, in the
upper-left quadrant, the following arrays will be cre-
ated:

e For each group of 4 hosts:

— acl_to_ac4: acl, ac2, ac3,acd

— acb_to_ac8: ach, acb, ac7, ac8

— ac9_to_acl2: ac9, acl0, acll, acl2

— acl3_to_acl16: acl3, acl4, acl5, acl6

e For each pair of these groups:

— acl_to_ac8:
acl, ac2, ac3, ac4, ach, ac6, ac7, ac8

— acl_to_ac4_ac9_to_acl2:
acl, ac2, ac3, ac4, ac9, acl0, acll, acl2

— acl_to_ac4_acl3_to_acl6:
acl, ac2, ac3, ac4, acl3, acl4, aclb, acl6

— acb_to_acl2:
ach, acb, ac?, ac8, ac9, acl0, acll, acl2

— acb_to_ac8_acl3_to_aclé:
ach, ac6, ac7, ac8, acl3, acl4, aclb, acl6

— ac9_to_acl6:
ac9, acl0, acll, acl2, acl3, acl4, aclb, acl6

e For all 4 of these groups:

— acl_to_acl6:
acl, ac2, ac3, ac4, ach, ac6, ac7, ac®, ac9,
aclQ, acll, acl2, acl3, acl4, aclb, acl6

For the 52 hosts of AC, this gives a total of 172 arrays,
which has not been found to noticably slow arrayd.
Each array requires a unique name, which is con-
structed from the list of hosts with sequences of consec-
utive hosts replaced with “to”, as shown in the above
lis

As required by array services, each array is
given a unique identifier (to allow the generation of
unique ASH values). We then wrote a small static
libarrayset library, which parses the arrayd.conf
file, and, given a list of hostnames, finds the smallest
array that contains all of those hosts. This is used by
anumpirun to determine the best array to use for a
job, which is passed to RM API with the -a option in

6

arrayd has an 8kb limit on the length of the array name,
and the array name cannot begin with a digit.

10

MPI_RM_parse. The batch queueing system also uses
libarrayset to determine which array to use when
suspending, resuming or killing a job. Contacting only
the most relevant arrayds has a number of positive
effects:

1. Job startup is quicker.
2.

3.

arrayds are less susceptible to high loads.

Job startup is not unnecessarily delayed when un-
related hosts are down.

The other improvement included in the second gen-
eration of anumpirun is the removal of the “remote
setup” phase of MPI job startup. This required an-
other mechanism for informing the batch system of
the MPI processes, and for creating the fine-grained
sub-cpusets and placing the MPI processes into them
(at a stage that is early enough in their startup). This
proved to be a challenge, due to the way MPT starts
the MPI processes by directly fork()ing in the shep-
herd process,

First, anumpirun uses a per-shepherd wrapper. This
takes command line arguments to specify the main
cpuset, whether to notify the batch system, the ranks
of the MPI processes it needs to deal with, followed
by the actual MPI command line itself. This wrapper
is able to inform the batch system (if necessary) and
create the fine-grained sub-cpusets before exec()ing
the MPI shepherd. The batch system is instructed to
track all the processes below this one in the process
tree.

However, the issue of placing the MPI processes into
these sub-cpusets still remains. This is acheived by us-
ing the LD_PRELOAD dynamic linker environment vari-
able to preload the 1ib_mpt_child_setup.so library.
This library doesn’t provide any functions, rather, it
relies on the fact that its initialisation code is executed
during the startup of each child process. This means
that when the shepherd spawns the MPI processes, the
lib_mpt_child_setup.so initialisation code is able to
determine the relative rank of the process and place it
into the respective sub-cpuset. Since the library has
been preloaded, this happens before the initialisation
of any other library (such as 1ibmpi). An environment
variable is set by the per-shepherd wrapper to its pro-
cess id, allowing the 1ib_mpt_child_setup.so initial-
isation to recognise when it is initialising the shepherd
process, and hence only perform operations when the
parent process id matches the process id in the envi-
ronment variable. The relative rank is determined by
using the array services library to obtain the list of
processes with the ASH of the current process. This
list of pids is in order of process creation. The parent
process is found in the list, and then the number of pro-
cesses following this (that have the same parent pro-
cess id) are counted until the current process is found,
and this number determines the relative rank of the
process, and therefore which sub-cpuset it should be
placed into. Finally, the library unsets the LD_PRELOAD
environment variable, in case any of the MPI processes
spawn child processes.

11

Removing the remote setup stage helps to lower the
pressure on the arrayds. It also has the additional
benefit of approximately halving the startup time for
MPT jobs.

3.3.3 Third generation

Unfortunately, we continued to observe MPI job
startup failures and delays with the second generation
of anumpirun (although their incidence was greatly re-
duced). The third generation of anumpirun completely
does away with launching MPI processes via arrayd.

An unfortunately problem with the RM API is that
it always launches the MPI program with arrayd, and
there is no way to force it to directly spawn the pro-
cesses, such as when using sgimpirun with no host-
names. However, there is an undocumented function
in the RM API,

int mpirun(int argc, char *argv[])

which performs identically to sgimpirun (in fact, it is
likely that the implementation of sgimpirun is merely
int main(int argc, char *argv[]) { return
mpirun(argc, argv); }). This can be used to
directly launch MPI programs without using arrayd,
and without requiring a publicly executable version of
sgimpirun installed on the system. (Allowing users
access to sgimpirun would be problematic, since they
could potentially run their code on any host, at any
time.)

However, there are two main hurdles with this strat-
egy. The first is that the RM API still contacts arrayd
when directly spawning the MPI processes, in order
to assign an ASH to the processes. This has been
shown to cause problems when a batch job is sus-
pended during its communication with arrayd, as the
arrayd sometimes blocks on these communications,
and is therefore unable to service other requestsﬁ. The
second problem is that the 1ib_mpt_child_setup.so
initialisation code relies on the processes being placed
in an ASH in order to determine their relative ranks.
For these two reasons, it is necessary that the RM API
continue to have an arrayd available, even if it is not
used to spawn the MPI processes.

The solution, then, is to have one arrayd instance
per MPI job. A program called aide was written
which will start an arrayd for an MPI job. Since
arrayd must be run as root, aide is installed setuid-
root. It finds an available port that arrayd can use
and starts an instance of arrayd using this port and

"This problem was avoided in the first and second generation
anumpiruns by having the batch system suspend, resume and
kill MPI jobs with array services, rather than by sending the
signals directly to the processes. This means that the arrayd
must process the signal request, and as it is not possible for
the arrayd to be simultaneously processing the signal request
and the job startup request, this problem is avoided. However,
part of the rationale behind directly spawning MPI processes
(as opposed to using arrayd), is that the batch system will then
once again be able to send signals directly to the processes in
question.

a minimal arrayd.conf file. It then drops root priv-
iledges, sets the ARRAYD_PORT environment variable ac-
cordingly, and executes the given command line. When
either the arrayd or the user program exit, aide kills
the other and cleans up the various lock files. However,
arrayd listens for connections both on an AF_INET
TCP port, and an AF_UNIX local Unix domain socket.
The Unix domain socket is sufficient in this case, since
no remote connections are expected or desired for the
per-job arrayd. aide uses LD_PRELOAD to preload the
lib_no_inet_bind.sodynamic library. This has been
written to intercept calls to the bind () C library func-
tion. When bind () is called with an non-AF_INET pa-
rameter, it calls the actual bind () function and returns
the result, as usual. However, when it is called with a
AF_INET parameter, it merely returns success (0) with-
out calling the actual bind () function. This allows the
underlying program to believe that it has successfully
bound the socket to the TCP port, when in fact it
has not, and no connections will ever be returned by
accept () or select() calls on the socket. This is ef-
fectively a “user-space firewall” around arrayd.

Thus, when anumpirun previously called the RM
API mpirun() function, it now executes aide, which in
turn executes anumpirun with additional parameters
indicating that the mpirun() function can be called.
This allows each MPI job to have its own arrayd
which is treated as part of the batch job (i.e. it is sus-
pended, resumed and killed just like other processes in
the batch job).

4 Conclusion

This paper has presented the techniques and policies
implemented by the APAC National Facility to sup-
port its new SGI Altix cluster. These have been re-
quired to ensure that the diverse and competitive user
workload obtains consistently high performance, whilst
maintaining high system utilisation through the use of
job suspension. The primary issues that have been
addressed are those in the PBS-based batch queueing
system, and those relating to the SGI MPT-based MPI
system.

12

References

[1] 25th Top500 Supercomputer List, June 2005.
http://www.topb00.org/lists/2005/06/.

Dean Roe Michael
and Karl Feind.
Global Shared-Memory Architecture,
http://sc.tamu.edu/whitepapers/altix/
altix_shared_memory.pdf.

[2] Woodacre, Derek Robb
The SGI® AltixTM 3000

2003.

[3] OpenPBS v2.3: The Portable Batch System Soft-

ware, April 1999. http://www.0OpenPBS.org/.

[4] W. Gropp, E. Lusk, and A Skjellum. Using MPI:
Portable Parallel Programming with the Message-

Passing Interface. MIT Press, 2nd edition, 1999.

[5] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the
MPI message passing interface standard. Parallel

Computing, 22(6):789-828, September 1996.

[6] Greg Burns, Raja Daoud, and James Vaigl. LAM:
An Open Cluster Environment for MPI. In Pro-
ceedings of Supercomputing Symposium, pages 379—

386, 1994.

[7] Jeffrey M. Squyres and Andrew Lumsdaine. A
Component Architecture for LAM/MPI. In Pro-
ceedings, 10th European PVM/MPI Users’ Group
Meeting, number 2840 in Lecture Notes in Com-
puter Science, pages 379-387, Venice, Italy,

September / October 2003. Springer-Verlag.

http://www.top500.org/lists/2005/06/
http://sc.tamu.edu/whitepapers/altix/
altix_shared_memory.pdf
http://www.OpenPBS.org/

	Introduction
	System details
	Motivation
	cpusets

	Batch-queueing issues
	MPI issues
	MPT launcher operation
	NF Requirements
	Method
	First generation
	Second generation
	Third generation

	Conclusion

