Recursive Space Decompositions in
Force-Directed Graph Drawing Algorithms

K. J. Pulo

Basser Department of Computer Science,
University of Sydney, NSW, Australia, 2006.
Email: kev@cs.usyd.edu.au

Abstract

Force-directed graph drawing algorithms are a popular
method of drawing graphs, but poor scalability makes
them unsuitable for drawing large graphs. The FADE
paradigm uses the proximity information in recur-
sive space decompositions to address this problem and
that of high visual complexity. The FADE paradigm
has been presented with a simple and common re-
cursive space decomposition known as the gquadtree.
However, quadtrees have the disadvantage of not be-
ing robust with respect to small perturbations and
some transformations of the input data, and this can
adversely affect the resultant graph drawing. This
paper investigates the FADE paradigm using an al-
ternative recursive space decomposition known as the
recursive voronoi diagram, which avoids some of the
problems found in quadtrees at an additional time
complexity cost. Preliminary results with random
graphs and graphs in the domain of software engi-
neering are presented and suggest that using better
recursive space decompositions has promise, but the
additional computational effort may not be easily jus-
tified.

Keywords: Force-Directed Graph Drawing, FADE
Paradigm, Recursive Space Decomposition,
Quadtree, Voronoi Diagram, Recursive Voronoi

Diagram, k-Means

1 Introduction

Force-directed graph drawing algorithms are a com-
mon and simple method for computing a draw-
ing of a graph. However, they generally do
not scale well as the number of nodes increases,
making them unsuitable for drawing large graphs.
The FADE paradigm addresses the problems of
high computational cost and visual complexity
by using recursive space decompositions to cap-
ture essential proximity information in the drawing
[Quigley and Eades, 2000][Quigley, 2001]. This infor-
mation is used to increase the speed of the force-
directed graph drawing algorithm, and to create vi-
sual abstractions of the graph at various levels of de-
tail.

In [Quigley and Eades, 2000] and [Quigley, 2001],
the FADE paradigm has been presented and explored
with a recursive space decomposition known as the
quadtree [Samet, 1990]. Quadtrees are a commonly
used recursive space decomposition which are popu-
lar as a result of their simplicity, which makes them

Copyright ©2001, Australian Computer Society, Inc. This paper
appeared at the Australian Symposium on Information Visual-
isation, Sydney, December 2001. Conferences in Research and
Practice in Information Technology, Vol. 9. Peter Eades and
Tim Pattison, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

easy to understand and implement and gives good
performance. However, the geometry of a quadtree
depends only on the drawing region, not the data be-
ing drawn. This means that they are not robust, and
small changes to the data can result in substantially
different quadtree structures. This in turn can have
negative effects on the quality of the resulting graph
drawing and visual abstraction.

This paper presents an exploration of the FADE
paradigm using an alternative recursive space de-
composition known as the recursive voronot diagram.
This data structure spends some extra computational
effort in its construction phase in an attempt to avoid
some of the problems found when using quadtrees.
This provides the potential for obtaining graph draw-
ings which are superior to those found when using
quadtrees. However, preliminary results suggest that
it may be difficult to justify this extra computational
effort.

2 Force-Directed Graph Drawing and
Recursive Space Decompositions

2.1 Force-Directed Graph Drawing

Force-directed graph drawing is a family of algo-
rithms for drawing graphs which have become popular
due to their ease of implementation and understand-
ing, ability to handle various types of constraints,
and frequent ability to draw graphs symmetrically
[Di Battista et al., 1999]. They work by modelling
the graph as a physical system of forces and then find-
ing an equilibrium state of locally minimum energy of
the system. Typically, edges between nodes are mod-
elled as Hooke’s law springs, and nodes are modelled
as electrostatic charges. The spring forces attempt to
draw adjacent nodes near one another, and the repul-
sive electrostatic forces prevent the resolution from
deteriorating.

Since the graphs being drawn are typically sparse
(that is, the number of edges m is of the order of the
number of nodes n, rather than of the order of the
maximum possible number of edges n?), the compu-
tation of the long-range electrostatic forces dominates
that of the springs. This is because there are O(n?)
electrostatic interactions (all pairs of nodes) but usu-
ally only O(n) spring interactions. This O(n?) depen-
dance means that force-directed graph drawing meth-
ods do not scale well to large graphs.

2.2 Recursive Space Decompositions (RSDs)

Recursive space decompositions are spatial data
structures which are defined recursively, and at each
level of the recursion divide space into smaller regions.
Each region is then further subdivided at the next
level of the data structure. This creates a tree struc-
ture and allows spatial objects within these regions

+
= =
- e
NIREE
= =
=
|, T N
T T

Figure 1: A quadtree spatial decomposition of 100
points uniformly distributed in the plane.

to be stored at the appropriate leaves of the tree.
This is how recursive space decompositions (RSDs)
store proximity information — spatial objects which
are near one another in space will also be located
near one another in the RSD tree. In addition to
this grouping of objects, RSDs allow efficient spatial-
based lookup queries. We shall restrict our attention
to storing points in RSDs, and will most often use
only 2 dimensions.

RSDs can be divided into two broad categories:
regular RSDs and irregular RSDs. Regular RSDs
divide space evenly at each level; examples include
the quadtree (and variants, such as the nono-tree)
[Samet, 1990] and k-d PR trie [Samet, 1990]. Irregu-
lar RSDs may divide space into arbitrarily sized and
shaped regions at each level; examples include point
quadtrees [Samet, 1990], k-d trees [Samet, 1990], and
recursive Voronoi diagrams (Section 3). Irregular
RSDs can further be categorised into wuniform and
weighted variants. In uniform irregular RSDs, the
exact shape and size of the spatial subdivision is in-
dependant of points involved. By contrast, weighted
irregular RSDs examine the data points in order to
compute the spatial subdivision.

Regular RSDs suffer from not being robust, that
is, the tree structure can be vastly altered by only
small changes in point positions or by performing op-
erations such as translation, rotation, and scaling on
a set of points. This lack of robustness is particularly
problematic for the quality of the visual abstraction
(including the overall layout), as it is determined by
the RSD used. Weighted irregular RSDs aim to spend
some extra time at the construction stage analysing
the data in order to adjust the spatial subdivisions to
avoid these problems. This paper investigates using
one such weighted irregular RSD, the k-means recur-
sive Voronoi diagram, rather than a regular RSD, the
quadtree, in the area of tree code optimisations for
force-directed graph drawing.

Quadtrees are a commonly used regular RSD,
mainly due to their simplicity, which gives them
good performance without being overly complicated.
They are used by the FADE paradigm analy-
sis in [Quigley and Eades, 2000] and [Quigley, 2001].
Briefly, they work by recursively dividing space into
four “quadrants” of equal size until each leaf quadrant
contains at most 1 data point. They can be built in
time O(nlogn) for n data points and have O(logn)
expected levels.

Figure 1 is an example of a quadtree spatial de-
composition for 100 uniformly distributed 2D points,
and Figure 2 illustrates a simple quadtree and its cor-
responding data structure.

ae——qb: ae]

(a) Level i (b) Level i+1

Figure 4: The connectivity between nodes a and d via
the bc pseudonode in level i 4+ 1 causes the implied
connectivity between nodes a and ¢, and nodes b and
d in level i. We say that ac and bd are implied edges.

A simple example of how quadtrees can fail is
shown in Figure 3. Figure 3(a) shows a set of data
points well segmented by the first level of a quadtree.
Common transformations which arise naturally in
force-directed methods include translations, rotations
and scalings. Figure 3(b) shows the result of a simple
rotation of 45 degrees around the centre. The result is
that now the data points are poorly segmented by the
first level of the quadtree; Figure 3(c) shows a more
desirable first level of the recursive space decomposi-
tion.

2.3 Tree Codes and the FADE paradigm

RSDs are used in the physics community to
speed up the calculation of n-body problems;
we concentrate on the treatment of Barnes and
Hut [Barnes and Hut, 1986], as used in the FADE
paradigm [Quigley and Eades, 2000][Quigley, 2001].

In this strategy, an RSD is constructed ab initio
at each timestep of the force-directed graph draw-
ing algorithm. In addition, the RSD maintains a
pseudonode at each node of the RSD tree; this is a
node located at the mean position of the descendant
nodes, with weight equal to the number of descen-
dant nodes. This is used to speed up the calculation
of the node-node (ie. electrostatic forces) by elimi-
nating the need to calculate the force contribution of
every node on every other node. Instead, the force
from distant nodes is included as a single group con-
tribution by using the pseudonode. This introduces
some error, but speeds up the calculation.

The exact method of computing the node—-node
forces is as follows. We traverse the RSD tree, and
for each node in the tree, the Barnes-Hut opening
criterion, % is computed, where s is the width of the
quadtree cell and d is the distance between the current
node and the pseudonode of the cell. If 5 < 6, where
0 is a constant tolerance parameter, then the current
node is deemed to be “far” and the force between
the node and the cell’s pseudonode is computed and
used. By contrast, if § > 6, traversal of the RSD con-
tinues to the children cells. The value for 6 is typically
near 1.0. As it approaches 0 more direct node—node
interactions are computed, decreasing the error but
increasing the time taken, and as it approaches infin-
ity less direct node-node interactions are computed,
increasing the error but decreasing the time taken.

Finally, there is the issue of implied edges. This
is the situation where the graph at a higher level of
abstraction (as defined by the RSD) can have connec-
tivity which the lower levels do not have. An example
is illustrated in Figure 4,where we say that an implied
edge exists joining nodes a and ¢, and nodes b and d.

.......................

o

.......................

Figure 2: A simple quadtree spatial decomposition (left) and its corresponding data structure (right).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

.
s

* e
.

o .
Lo e oot L ee
oo’, | o’

(2)

(b)

()

Figure 3: A simple illustration of how quadtrees can be less than desirable for certain point distributions.

Clearly, implied edges are not desirable where the
abstracted view is to be directly viewed, and they also
have an impact on the quality of the overall drawing.
Indeed, the number of implied edges is a good mea-
sure of the quality of the visual abstraction. One of
the aims of using a weighted irregular RSD is that
implied edges caused by the non-robustness of regu-
lar RSDs can be avoided, resulting in better visual
abstractions.

3 Recursive Voronoi Diagrams

This section describes the main Recursive Voronoi Di-
agram (RVD) data structure. It is an extension of the
Voronoi Diagram (VD) to have a recursive nature.

The Voronoi Diagram is an efficient way of an-
swering range queries, that is, for a set of sites in
d-dimensional space (ie. ®?), which site is nearest to
a given query point [Fortune, 1992][O’Rourke, 1998].
An example VD is shown in Figure 5. The VD takes
as input a set S of points in space called the sites, and
constructs as output the Voronoi cells corresponding
to these sites. The Voronoi cell associated with site
s € S is denoted by Vs(s) and is the set of all points
in space which are closer or equidistant to s than any
other points in S. The Voronoi Diagram is the collec-
tion of Voronoi cells for all s € S. It can be computed
by various algorithms in O(nlogn) time, for n = |5
[Fortune, 1992].

The general idea of the RVD is to have an indepen-
dant “sub-Voronoi Diagram” in every Voronoi cell.
Example RVDs are illustrated in Figure 6.

3.1 Description

We define the d-dimensional RVD by presenting an
algorithm for its construction. Each point will be

Figure 5: The Voronoi Diagram of the 100 points used
in Figure 1.

(a) random sampling

(b) k-means

Figure 6: Two Recursive Voronoi Diagrams of the 100 points used in Figure 1.

discussed in more detail following the outline of the
algorithm.
Input:

1. A set S of d-dimensional points in d-space (ie.
d-vectors), called the sites.

2. A connected subset R C R? (such that Vs €
S, s € R) called the region.

Steps:

1. Obtain a set of “characteristic” d-dimensional
points C.

2. Construct the VD of the set of points C.

3. Intersect this VD with R,
C, Vi(e) =Ve(e)NR.

4. Partition S into S'(¢), Ve € C, such that Vs €
S,s€8'(c) = s e Vo).

5. Ve € C recurse with S = S’(c) and R = V. (¢)
(unless |S'(c)| < 2).

that is, Ve €

The region R can be open or closed, finite or infinite.
For example, it is useful to specify R = R¢ for the ini-
tial level of the RVD, or to ensure that all the Voronoi
cells are are bounded by having a bounded initial R.

The method used to find the set of characteristic
points C' in step 1 determines the specific variant of
RVD being used. This is discussed in detail in Sec-
tion 3.2.

With our definition of Vi (c), notice that it is pos-
sible to have Vo(e1) N Ve(ex) # 0, e1 # ¢ if ¢; and
¢o share an “edge” or “vertex” of the VD (straight
lines equidistant to 2 or more sites). In the case that
some s € S lies on such a Voronoi edge or vertex (ie.
is in Vo(e1) N Ve(eo) N...), we arbitrarily put s into
exactly one of S'(c1), S'(¢2), ...

We restrict our attention to d = 2, as higher di-
mensions are unnecessarily complicated for this study.
In addition, the complexity of the VD scales badly as

d increases: worst-case O(n(%]) (for n = |S|) and
expected-case O(cgn) where ¢4 is a constant which
grows exponentially with d, making VDs in higher
dimensions impractical [Fortune, 1992].

3.2 Finding the characteristic points

Various strategies are possible for obtaining suitable
sets of characteristic points C. In each case, the num-
ber of characteristic points may or may not be con-
stant. For example, it may depend on the number of
sites n, or the level of the RVD [.

Uniform Distribution. This method chooses
characteristic points according to a uniform distri-
bution (with no respect for the data points). This
requires the initial R to be bounded (and hence every
Voronoi cell also bounded), so that the characteris-
tic points can be chosen uniformly in these regions.
It takes time O(r), where r is the number of data
points chosen.

Random Sampling. This method chooses char-
acteristic points by randomly selecting r sites. It also
takes time O(r).

k-means. This method runs the k-means cluster-
ing algorithm on the sites and then chooses the char-
acteristic points to be the k representative points of
the k-means clustering. The k-means algorithm can
either be run to convergence (which isn’t guaranteed)
or for a constant number of iterations. The k-means
algorithm takes time O(kn) per iteration.

The k-means algorithm is a method of geomet-
ric clustering [Estivill-Castro and Houle, 2001]. This
means that in a graph drawing context, the cluster-
ing of the nodes is obtained by considering only the
locations of the nodes, without regard for any edges.

Figure 6 illustrates two example RVDs on the same
set of points. Figure 6(a) uses the random sampling
method of choosing characteristic points; notice that
the Voronoi cells have poor aspect ratios and can be
quite irregularly shaped. By contrast, Figure 6(b)
uses the k-means method of choosing characteristic
points; notice that the Voronoi cells have better as-
pect ratios, the divisions are more regular and dis-
tributed, and the depth of the RVD tree is in general
smaller.

The k-means algorithm works by storing a repre-
sentative point for each cluster of points. This repre-
sentative is the mean of the points in the cluster. Each
point is then assigned to the cluster corresponding to
its nearest representative point. The representative
points are then recalculated based on the new cluster
points, and the process iterates. The initial cluster-
ing for k-means is a random clustering, however the
clustering is not reset between iterations of the FADE

algorithm. This prevents the k-means algorithm from
needing to escape from the initial random clustering
at every FADE iteration, since the clustering carried
over from the preceeding FADE iteration is a good
starting point for the current iteration’s clustering.

It is possible to use geometric clustering meth-
ods which are more advanced than k-means, such
as the k-medoids based methods presented in
[Estivill-Castro and Houle, 2001], although they are
generally more expensive.

3.3 Complexity analysis

If we consider the number of characteristic points
|C| = k to be constant at each level, then we would
expect that each cell will have a constant fraction of
the number of points, for a uniform distribution of
original points. This implies that we expect O(logn)
levels (for n = |S]|) for an approximately uniform
distribution of characteristic points. Finding the
Voronoi Diagram of the characteristic points takes
time O(klogk), which is O(1) (since k is constant).
It also takes constant time to find the cell a query
point lies in.

During construction, each point will be partitioned
into a single cell at each level, taking O(nlogn) time.
If the k-means method of finding characteristic points
is used, then at each level the cost due to this will
be O(n) (for a constant number of k-means itera-
tions). This gives a total k-means cost of O(nlogn),
and a corresponding total overall construction cost of
O(nlogn). This is the same as the construction cost
of a quadtree, however the hidden constants involved
with the RVD are generally worse (due to the over-
heads involved in computing the Voronoi Diagram
and the k-means algorithm).

If |C| is not constant, but rather |C| = ¢|S]| for
some constant fraction 0 < ¢ < 1, then the k-means
cost per level becomes O(kn) = O(n?) (since now
|C| =k = O(n)). The cost of taking the Voronoi Di-
agram is O(nlogn) time, and it takes O(logn) time
to find the cell a query point lies in. However, we only
expect 7 = 2- = % points per cell on the second level,
which gives a constant number of levels. The overall
construction time in this case is dominated by the
O(n?) to run k-means, which is as poor as the origi-
nal force-directed graph drawing algorithm. For this
reason, we restrict our attention to the case where |C|
is constant. Choosing |C| = ¢|S| may give benefits
despite the increased computational complexity, but
this is outside the scope of this paper.

3.4 Cell size measures

Recall from Section 2.3 that the Barnes-Hut opening
criterion § is a measure of the distance of the current
node from the centroid of the query cell, with respect
to the size of the query cell. In particular, a cell
is opened when ¢ > £ for s the query cell’s size, d
the distance between the current node and the query
cell’s pseudonode (center of mass), and 6 the constant
tolerance opening criterion.

For quadtrees, choosing s to be the width of the
query cell is natural and straightforward. However,
for irregular RSDs such as the Recursive Voronoi Di-
agram, the “size” s of each cell may not be so obvious.

The measure used is to take the average of the
width and height of the smallest enclosing rectan-
gle aligned with the z and y axes (said to be an
“orthogonally-aligned rectangle”). This was chosen
because it is a simple measure which seems to work
well in practice. Alternatives include:

1. the square root of the area of the smallest enclos-
ing orthogonally-aligned rectangle,

W o
h pseudonodeT *p

o7

P

Figure 7: An example cell suggesting the use of mo-
ments.

2. the square root of the area of the smallest enclos-
ing circle,

3. the radius of the smallest enclosing circle, and

4. the square root of the area of the cell.

All of these involve more computation than our cho-
sen measure.

Figure 7 illustrates an example where taking the
average of the width and height or the square root of
the area of a rectangular cell both give a less than de-
sirable result. Consider two points p; and py, where
p1 is distance d; from the cell’s pseudonode and ps is
distance dy from the cell’s pseudonode. If we make
d» marginally smaller than dy, it is possible to choose

w and h such that using s = Vwh gives ;- > 1 (ie.

p1 is far) and = <1 (ie. ps is close). However, pi
is closer to the cell as a fraction of the cell width w,
than the distance of p2 as a fraction of the cell height
h. This suggests a method which takes the moment of
the cell to obtain the smallest enclosing rectangle (in
any orientation). This rectangle could then be used
as outlined above for the orthogonally-aligned rect-
angles. However a more sophisticated method could
find the distance to the cell in terms of the axes of
this rectangle. This would more accurately represent
the distance between the cell and point in terms of
the shape and orientation of the cell.

4 Preliminary Results

This section presents some preliminary results ob-
tained using the k-means RVD with the FADE
paradigm of force-directed graph drawing. More ex-
tensive results are currently being gathered and anal-
ysed.

We examine two sets of graphs. The first are ran-
dom “node clustered” graphs, and the second are a
small selection of graphs in the domain of software en-
gineering from the Bauhaus project [Bauhaus, 2001],
as used and described in detail in [Quigley, 2001]. The
results are presented in the form of a picture gallery
(Figures 8 to 12) comparing the direct force-directed
method (ie. without FADE), the quadtree based
FADE method, and the k-means RVD based FADE
method. More complete results including graph based
measures (such as the number of edge crossings and
the aspect ratio), clustering measures (such as the
Cohesion and Coupling (COCO), Implied Edge Pre-
cision (IEP), Lowest Common Ancestor (LCA) and
Node Neighbourhood Similarity (NNS)), and timing
and error rates will be included in the aforementioned
extensive results.

Random “node clustered” graphs are generated in
the following way. The number of nodes n and edges
m are specified as input; typically m = cn, where ¢ is
around 1.05. The number of desired clusters k is also
specified as input. Of the n nodes, k are randomly se-
lected to be the “cluster nodes”. Each of the m edges
is created by choosing a source and destination node

such that each edge is equally likely to be a cluster
node or not. Thus, half of the time, the source node
is chosen to be one of the k cluster nodes, the remain-
ing half of the time, the source node is chosen to be
one of the n — k non-cluster nodes. The destination
nodes are chosen in the same way. This means that
it is equally likely for an edge to be between two clus-
ter nodes or two non-cluster nodes, and it is twice as
likely for an edge to be between a cluster node and a
non-cluster node.

This experiment used k = 4 for both the random
node clustered graph generation and in the k-means
clustering algorithm (ie. |C| = 4), so as to be con-
sistent with the number of subdivisions made by the
quadtree FADE method. Most of the graphs were
not connected, so to avoid problems with different
connected components interfering with one another,
only the largest connected component was used. The
graph drawings are informally and subjectively com-
pared to determine how relatively “crowded” they are
in terms of areas of high node or edge density. This is
based on the reasoning that a more robust RSD has
less implied edges, thereby giving a better approxi-
mation of the direct node-node forces. More accurate
node-node forces should be able to better overcome
the edge forces, giving a drawing with more evenly
spaced nodes.

As can be seen in Figures 8 and 9, the difference
between the quadtree and k-means RVD FADE meth-
ods is small for random node clustered graphs. For
Figure 8, the difference between quadtree and RVD
is difficult to see, and for Figure 9, differences are
noticable but it is unclear which is better.

The drawing produced by quadtree in Figure 10 is
similar, but slightly worse than that produced by di-
rect and RVD. There is a small group of nodes on the
right side of the main central arrangement of nodes
which is obscured in the quadtree layout. The en-
tire right side is clearest in the RVD layout, followed
closely by the direct layout.

There are no substantial differences between any
of direct, quadtree and RVD in Figure 11.

The drawing produced by RVD in Figure 12 is
noticeably worse than those produced by the direct
and quadtree methods, as the RVD layout is much
more congested.

5 Conclusions and Future Work

Recursive space decompositions (RSDs) can be used
to improve the time performance of force-directed
graph drawing algorithms. Current investigations
of the FADE paradigm have concentrated on regu-
lar RSDs, in particular the quadtree. We have pre-
sented an alternative FADE algorithm, based on the
a weighted irregular RSD called the k-means recur-
sive Voronoi diagram and compared it to the quadtree
based FADE algorithm.

The preliminary results presented in Section 4
tend to suggest that the layouts produced by the
k-means recursive Voronoi diagram FADE algorithm
are generally of comparable quality to those produced
by the quadtree FADE algorithm. In some cases, the
k-means RVD FADE algorithm performs better, but
in other cases the quadtree FADE algorithm does.
Complete results, including objective measures such
as graph based measures and clustering measures, an
examination of the visual abstraction (in particular
the implied edges) and results for more varied and
larger graphs, are needed to fully resolve the issue
of what class of graphs or circumstances may benefit
from the use of the k-means RVD FADE algorithm.

Future work can investigate the possibility of us-
ing other weighted irregular RSDs which are cheaper
than the RVD but still perform better than quadtrees.

Candidates for this work are the weighted k-d PR trie
[Samet, 1990] and the 2-RVD (the k-means RVD with
k = 2, similar to the weighted k-d PR trie). Also in-
teresting is the possibility of uniform irregular RSDs,
or even some restricted class of regular RSDs, which
avoid the robustness problem. Finally, an investiga-
tion of the effect of cell size measure (Section 3.4) on
the performance of irregular RSDs could be carried
out.

References

[Barnes and Hut, 1986] Barnes, J. and Hut, P,
(1986). A hierarchical O(nlogn) force-calculation
algorithm, Nature, 324, no. 4, 446-449.

[Bauhaus, 2001] Bauhaus project web site.
http://www.informatik.uni-stuttgart.de/ifi/ps/
bauhaus/index-english.html

[Di Battista et al., 1999] Di Battista, G., Eades, P.,
Tamassia, R. and Tollis, I. G. (1999). Graph Draw-
ing: Algorithms for the Visualization of Graphs.
Prentice Hall, Upper Saddle River, New Jersey.

[Estivill-Castro and Houle, 2001] Estivill-Castro, V.
and Houle, M. E. (2001). Robust Distance-Based
Clustering with Applications to Spatial Data Min-
ing, Algorithmica, 30, 216—-242, Springer-Verlag.

[Fortune, 1992] Fortune, S. (1992). Voronoi Dia-
grams and Delaunay Triangulations, Computing
in Fuclidean Geometry, Ding-Zh Du and Frank
Hwang (eds), World Scientific, Singapore.

[O’Rourke, 1998] O’Rourke, J. (1998). Computa-
tional Geometry in C, Second Edition. Cambridge
University Press, New York.

[Quigley, 2001] Quigley, A. (2001). Large Scale Rela-
tional Information Visualization, Clustering, and
Abstraction. PhD thesis, University of Newcastle,
Australia.

[Quigley and Eades, 2000] Quigley, A. and Eades, P.
(2000). FADE: Graph Drawing, Clustering, and
Visual Abstraction, Proceedings of Graph Drawing
2000, Joe Marks (ed), Springer LNCS 1984.

[Samet, 1990] Samet, H. (1990). The Design and
Analysis of Spatial Data Structures, Addison-
Wesley, Reading, Massachusetts.

i,
l “—' & i
Q W S

T

(a) direct (b) quadtree (c) k-means RVD

Figure 8: Random node clustered graph with 57 nodes and 99 edges.

(a) direct (b) quadtree (c) k-means RVD

Figure 9: Random node clustered graph with 123 nodes and 200 edges.

(a) direct (b) quadtree (¢) k-means RVD

Figure 10: The largest connected component of the same ezpression view graph for the “bash” software system,
from the Bauhaus project. Contains 104 nodes and 174 edges.

(a) direct (b) quadtree (¢) k-means RVD

Figure 11: The largest connected component of the signature view graph for the “bash” software system, from
the Bauhaus project. Contains 177 nodes and 211 edges.

(a) direct (b) quadtree (¢) k-means RVD

Figure 12: The largest connected component of the actual parameter view graph for the “bash” software
system, from the Bauhaus project. Contains 220 nodes and 296 edges.

