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Abstract

The inclusion tree layout convention involves drawing trees as
nested rectangles rather than the more common node-link di-
agrams. Finding good inclusion layouts presents some unique
challenges, for example, the quantification of what is meant by
the “size” of a rectangle. This paper empirically evaluates and
investigates several rectangle size measures for their usefulness
in the inclusion tree layout convention. We find that the area
size measure, commonly used in graph drawing, is very poorly
suited to the inclusion layout convention, whilst size measures
based on the aspect ratio of the layout are more appropriate
and give better results.
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1 Introduction

The inclusion tree layout convention (Eades, Lin &
Lin 1993) is an alternate method of drawing trees
where the parent—child relationship is visually repre-
sented by the child node being completely contained
within the parent node. For simplicity, nodes are usu-
ally represented as rectangles. The familiar classical
tree layout convention draws the tree in a “level” fash-
ion, where the y coordinate of a node is proportional
to its depth & from the root, with lines drawn between
the child and parent nodes. Figure 1 illustrates an
example tree in both the classical and inclusion con-
ventions.

This paper investigates the use of the inclusion
tree layout convention in terms of several real-world
trees. Several rectangle size measures are compared
for their usefulness in efficient inclusion tree layout
algorithms. The results show that the area measure,
which is commonly used in graph drawing, is inferior
to the aspect ratio based measures (such as the mini-
mum enclosing square measure) for the inclusion tree
layout convention.

Our investigation is motivated by one of the most
fundamental problems in information visualisation:
the detailcontext tradeoff. In any fixed size display
only small amounts of information can be displayed
at high detail, resulting in a lack of context (and
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(a) Classical Layout Convention

(b) Inclusion layout Convention

Figure 1: An example tree in classical and inclusion
layout conventions.
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Figure 2: An example of a clustered graph.

vice-versa). This is generally resolved by using geo-
metric zooming techniques, such as Focus + Context
(for example, fisheye lens, hyperbolic browser) and
Overview + Detail, to distort the visualisation into
limited regions of high and low detail (Card, Mackin-
lay & Shneiderman 1999). However, a better solution
is structural zooming, where the level of data included
in the visualisation is varied, rather than simply dis-
torting the full visualisation.

We are interested in applying this technique to
graphs, in particular, clustered graphs, which support
varying levels of detail by defining a recursive cluster-
ing of related nodes. Clustered graphs are most often
visualised by drawing the contents of each cluster in-
side a rectangle representing that cluster, as shown
in Figure 2. This allows clusters to be “summarised”
by simply drawing the cluster rectangle without its
contents. Before tackling the problem of structural
zooming of clustered graphs, we first study the prop-
erties of the simpler inclusion tree layout, which is
effectively a clustered graph with no edges.

2 Inclusion Tree Layout

2.1 Definitions

The formal definition of an inclusion layout for a tree

T is a rectangle R, in the plane %2 for each node u
of T, such that

e if u has a child w then R,, is within R,, and

e if 4 has children v and w then the rectangles R,
and R,, do not overlap and are separated by a
distance of at least 4.

We are interested in inclusion layouts that have a
small overall size given sizes of the leaf nodes. This
is because, in practice, nodes must contain text and
the available screen space is limited.

Figure 3: Treemap for the tree shown in Figure 1.

The inclusion tree layout convention is similar to
treemaps (Johnson & Shneiderman 1991), a space-
filling technique for drawing trees in the plane. Fig-
ure 3 shows an example treemap of the tree shown in
Figure 1.

One disadvantage of the inclusion tree layout is
that it does not scale well to very deep trees. It can
require exponential area (or exponentially small reso-
lution) in terms of the number of nodes, which means
that in a practical sense it is not very useful for trees
with depth greater than about 4 or 5. Thus the visu-
alisation of large trees in the inclusion tree layout con-
vention requires a dynamic navigation system, which
shows only a small subsection of the entire tree at
any given time. The user may then change the view
by expanding or collapsing nodes, which may require
the inclusion layout to be recomputed or otherwise
adjusted. In this paper we examine the properties of
static inclusion tree layouts in order to better under-
stand them, and hope to subsequently develop dy-
namic layout methods.

We consider several measures of the “size” of a
rectangle. For a rectangle of width x and height y,
these are:

e area: Y(z,y) = xy
e perimeter: Y(z,y) =z +y

e minimum enclosing square:
Y(z,y) = max(z,y)

e square aspect ratio: ¥ (z,y) =

z_l‘
Y

The only restriction on the size measure is that it
must be non-decreasing in both dimensions, that is,
¥(a,b) > 1(c,d) whenever a > ¢ and b > d.

Note that the minimum enclosing square and
square aspect ratio measures can easily be generalised
to an arbitrary aspect ratio r, which is useful for non-
square output regions (for example, most monitors
have r = 4/3).

e minimum enclosing rectangle:
Y(2,y,r) = max(z, r X y)

e aspect ratio: Y(z,y,r) = |£ —r

Y

v ‘

For simplicity, this paper considers only the square
r =1 cases.



(b) Horizontal

(a) Vertica

Figure 4: The two different types of arrangements
considered.

The fundamental problem for inclusion layout is
as follows:

Minimum Inclusion Layout Problem
(MILP): Given a tree T and a width X,
and height Y, for each leaf v of T, find a
minimum size inclusion layout for 7' such
that for each leaf v, the dimensions of R,
are X, X Y,.

If we consider the tree in which every non-root node
is a leaf, we can see that MILP is equivalent to a
2 dimensional bin packing problem, and is thus NP-
hard (Martello & Vigo 1998). However, a polynomial
time dynamic programming solution exists when the
problem uses integer coordinates. For binary trees,
(Eades et al. 1993) show that MILP can be solved
in time O(Mn), where M is the sum of the (integer)
widths of the leaf nodes and n is the number of non-
leaf nodes. In fact this result can be extended to trees
with a maximum degree d, as shown in (Hong, Eades
& Quigley 2002).

We consider only two possible ways of arranging
the children of a node, horizontal and vertical, as
shown in Figure 4. This is due in part to the bi-
nary tree heritage of the algorithm, but also helps to
keep the computational complexity under control by
avoiding the full bin packing problem.

2.2 Algorithms

The simplest algorithm is the greedy algorithm. This
traverses the tree in a post-order fashion from the
leaves up to the root, and for each node chooses either
horizontal or vertical arrangement based on which is
locally better in terms of a given size measure. Since
each node is touched exactly once in the traversal,
the greedy algorithm has a linear running time. As
is often the case with greedy algorithms, it is easy
to find counter-examples illustrating how the greedy
algorithm may make globally poor decisions based on
local conditions.

The dynamic programming algorithm stores a list
of possible solutions for each node. Each possible so-
lution is a complete arrangement of the descendants
of that node, specified recursively in terms of the pos-
sible solutions of the children nodes. The algorithm
then proceeds by building these lists in a post-order
fashion from the leaves up to the root node. When
completed the root node has a list of all of the possi-
ble overall solutions available, and can then traverse

this list to find the best solution according to a given
size measure. This solution then specifies a horizontal
or vertical arrangement for each non-leaf node, which
the algorithm can implement from the leaves upward
(since the leaf sizes are fixed) in order to obtain the
final solution.

However, such an exhaustive search is clearly not
efficient, since the number of possible solutions for a
node grows exponentially with the number of descen-
dant nodes. The concept of dominating rectangles
is used to reduce the number of solutions to a poly-
nomial. We say that a rectangle (c,d) dominates a
rectangle (a,b) if and only if ¢ > a and d > b. Since
our size measure is non-decreasing, if (¢, d) dominates
(a,b) then (c,d) will never be included in an optimal
layout, and so may be discarded. Figure 5 illustrates
this concept diagramatically. Note that we have as-
sociated the width of the rectangle with the z value
and the height with the y value. We now modify the
algorithm to store only non-dominating possible so-
lutions, rather than all possible solutions. Further,
we store them in order of increasing z; note that the
definition of dominating rectangles means that the x
coordinates will be unique and the list is also in or-
der of decreasing y. For example, in Figure 5 the
rectangles A, B, D could be a list of non-dominating
possible solution sizes. Now when constructing the
list of possible solutions for a node we can simply
“merge” the lists of the children in a fashion similar
to merge sort. We take a possible solution from each
child, add the composition of these possible solutions
only if it doesn’t dominate the previously added solu-
tion, and then advance to the next possible solution
for the necessary children. This process is performed
separately for horizontal and vertical arrangements,
and the results then merged again to obtain the final
list of possible solutions for the node.

2.3 Properties

We now examine the properties used empirically in-
vestigate the different inclusion layout size measures
and algorithms. The most fundamental is the non-
dominating function plot, which plots the list of all
non-dominating possible solutions with the z and y
coordinates as the width and height (respectively) of
each possible solution.

Figure 6 illustrates this concept, while Figure 7
shows the the non-dominating function for the tree
shown in Figure 1. Figure 7 also shows the sizes of
all the possible solutions as small circles. Note that
the non-dominating function consists of the “lower-
left frontier” of these points, as the other points dom-
inate at least one of the points which lie on the non-
dominating function. Strictly speaking, the points of
the non-dominating function should not be joined in
Figure 6, as it is not a continuous function. How-
ever, when the non-dominating functions of several
trees are plotted on the same set of axes for com-
parison, drawing them as lines is more useful than
disconnected dots.

The z and y coordinates for each inclusion tree
layout have been normalised based on the largest =
or y coordinate value.

Consider the layout specified by the leftmost point
on the non-dominated function. This is the tallest
non-dominated layout (commonly the layout with all
vertical arrangements), similarly the rightmost point
is the widest non-dominated layout. The larger of
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Figure 7: The non-dominating function plot for the

tree in Figure 1. The non-dominating function is indi-
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the height of the tallest non-dominated layout and
the width of the widest non-dominated layout is used
as the normalisation factor, and the corresponding
layout is called the normalisation layout.

Figure 8 shows the different types of non-
dominating functions possible. A general indication
of the possible quality of the inclusion layout is given
by the position and concavity of the function. Lay-
outs near the origin (0, 0) are preferable to those near
(1,1) as they are relatively smaller (in comparison to
the width or height of the normalisation layout). Lay-
outs near the line y = x are preferable to those near
the points (1,0) and (0,1) as they have less extreme
aspect ratios.

Trees which have non-dominating functions simi-
lar to the “bad case” in Figure 8 are poor candidates
for inclusion layout. This is because there is only a
small variation between the possible layouts and all
have z and y dimensions similar to the maximum
z or y dimension, and the concavity indicates that
the layouts with aspect ratios closer to 1 have (rela-
tively) larger x and y dimensions. By contrast, non-
dominating functions similar to the “good case” are
better candidates for inclusion layout, as their possi-
ble layouts have a larger variation of dimensions, with
some layouts having x and y dimensions much smaller
than the maximum z or y dimension (approaching the
region near (0,0)).

The next property to examine is how the different
size measures vary with the different non-dominating
solutions. We can use the third dimension to indicate
the value of the chosen measure for each layout in
the non-dominating function, as shown in Figure 9.
The “best” layout according to this measure is the one
with the smallest z value. However, this plot becomes
harder to read when comparing several measures, or
comparing the measures of several non-dominating
functions, and so we use a two dimensional variant
as shown in Figure 10. The z axis of this plot is
x — y from Figure 9, and is thus parallel to the line
z+y = 1 in Figure 7. The vertical dotted line at
x = 0 corresponds to the line y = z in Figure 7.
The dynamic programming algorithm will choose the
layout with the minimum value for a given measure.

3 Empirical Results

This section presents the results of using the inclusion
tree layout convention on various real world trees.

3.1 Data
Design behaviour trees

Design behaviour trees (DBTs) are a new method
for representing requirements in software engineering
(Dromey 2002). They are constructed by compos-
ing the behaviour trees for each functional unit in a
software system, and allow the system to effectively
be directly built out of its functional requirements,
rather than the more traditional activity of building
a system which satisfies those requirements. The size
of a DBT depends on the size of the software system
it describes, and may range from 20 nodes to 500.
Eleven DBTs are used in this investigation.

A typical DBT is shown in classical and inclu-
sion conventions in Figure 11. One observation about
these trees is that they contain many nodes of (out)

Tree Number of
Nodes | Layouts
Integrated Low Level DBT 504 364
Multi-Sensory Taxonomy 290 216
Satellite Low Level DBT 269 468
Enterprise Ontology 95 41
Integrated High Level DBT 89 38
Mine Pump DBT 78 20
Online Shopping Low Lvl DBT 43 11
Online Shopping Med Lvl DBT 40 18
12207 Acquisition DBT 40 6
Satellite High Level DBT 33 15
Car System DBT 22 6
Online Shopping High Lvl DBT 21 2
Man Fishing DBT 17 2

Table 1: Sizes of the input trees (Number Nodes) and
the number of non-dominating layouts (Number Lay-
outs), shown in decreasing order of number of nodes.

degree of 1, along with the occasional node of degree
4 or more.

Ontologies

Ontologies are formal descriptions of concepts and
relationships which exist in a given domain (Gruber
1993). They are commonly used in artificial intelli-
gence to support knowledge sharing between various
AT programs or agents. Among other things, they
contain a class hierarchy for the various types of indi-
viduals defined in the ontology. This class hierarchy
is sometimes called a tazonomy, and it is this tree
which we consider for inclusion layout. We consider
two taxonomies:

e The Multi-Sensory Taxonomy (MST) presented
in Keith Nesbitt’s PhD thesis (Nesbitt 2002),
with 290 nodes.

e The Enterprise ontology (Uschold, King,
Moralee & Zorgios 1998) from the Ontolingua
server at Stanford’s Knowledge System Lab-
oratory (Farquhar, Fikes & Rice 1996), with
95 nodes. Figure 12 shows the class hierar-
chy of this ontology in classical and inclusion
conventions.

Compared to DBTs, these trees have less nodes of
degree 1 and are generally broader.

3.2 Results

Figure 13(a) shows the non-dominating function plot
(as shown in Figure 7) for all of the input trees. Fig-
ures 13(b)—13(e) show the results of the four size mea-
sures for all of the input trees (as shown in Figure 10).
Table 1 lists the input trees along with the number
of nodes and the number of non-dominating layouts.

3.3 Discussion

3.3.1 Non-dominating functions

In Figure 13(a) we can see that the position and con-
cavity of the non-dominating functions varies consid-
erably between the input trees. Those with the best
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position and concavity are the Multi-Sensory Taxon-
omy, Integrated High Level DBT, Enterprise Ontol-
ogy, Integrated Low Level DBT and the Mine Pump
DBT. From Table 1 we can see that these are also the
largest trees in the input, with the notable exception
of Satellite Low Level DBT. However, for tree sizes
< 60 nodes, the non-dominating functions tend to
be in the upper-right half of the plot (that is, above
the x +y = 1 line) and relatively flatter. The figure
of 60 nodes is only approximate due to the uneven
distribution of input tree sizes.

We also observe that the non-dominating func-
tions are not symmetrical about the y = = axis, indi-
cating a preference for one dimension over the other.
This is due to the asymmetry of the leaf nodes in the
data used. These nodes generally contain text, giving
them aspect ratios greater than 1.

3.3.2 Measures

Figure 13(b) shows a plot of the perimeter size mea-
sure. In this plot we can see that the area of the lay-
out is a very bad size measure for inclusions layouts.
All of the trees exhibit very unstable, jagged plots
and are only in the region between approximately 0.5
and 1.0. In fact, some have plots which are clearly
an inverted U’ shape, indicating that for those trees,
the layouts with the minimal area have extreme as-
pect ratios.

Figure 13(c) shows a plot of the perimeter size
measure. In this plot, the y coordinate is the perime-
ter of the layout, that is, z 4+ y. This corresponds
to the y = z axis in Figure 13(a), and so what this
shows is equivalent to Figure 13(a) “rotated” by 45°,
where the line with y = 1.0 and —1.0 < z < 0 in
Figure 13(c) corresponds to the line with y = 1.0 and
0 < z < 1.0in Figure 13(a), and similarly y = 1.0 and
0 < z < 1.0 in Figure 13(c) corresponds to z = 1.0
and 0 < y < 1.0 in Figure 13(a). This measure is
reasonably good, in that most of trees have a clear
cut minimum which tends to be near z = 0 (square
aspect ratio), particularly the large trees. This is not
surprising, since this plot is effectively equivalent to
Figure 13(a).

Figure 13(d) shows a plot of the aspect ratio size
measure. In this plot we can see that all of the trees
have a very clear cut minimum at z = 0, y = 0 (with
the exception of the trees with only two layouts in
their non-dominating possible solutions, Man Fishing
DBT and Online Shopping High Level DBT). This is
not surprising, since the line £ = 0 corresponds to
the line y = z in Figure 13(a), the line where layouts
are square.

Figure 13(e) shows a plot of the minimum enclos-
ing square size measure. In this plot we can see that
this measure also has a definite minimum at z = 0.
This is because the minimum enclosing square will be
minimised when the layout is itself square, which cor-
responds to the line z = 0 (y = z in Figure 13(a)), as
in the aspect ratio size measure. However, the min-
imum enclosing square size measure is preferable to
the aspect ratio size measure because it also sepa-
rates the minimum points in the y axis, whereas the
aspect ratio size measure collects them all at y = 0.
This is useful because it means that for two layouts
of the same aspect ratio, it will always choose the one
with the smaller edge length. For algorithms which
take dominating rectangles into account, such as the
dynamic programming one, this makes no difference,

since the rectangle with the larger edge length would
be omitted as it is dominating, and the minimum en-
closing square size measure is equivalent to the aspect
ratio size measure. However, for algorithms which
don’t use dominating rectangles, such as the greedy
algorithm, the minimum enclosing square size mea-
sure is expected to be a better size measure. It also
allows for easier comparison of the layout quality of
different trees, as shown in Figure 13(e).

In Table 1 we can also see that the number of
possible layouts is not monotonically related to the
number of nodes. This is because the number of pos-
sible layouts scales with O(Mn), as described in Sec-
tion 2.1, rather than with the number of nodes.

3.3.3 Path compression

As noted in Section 3.1, the DBTs have more nodes
of degree 1 than the ontologies. Nodes of degree 1
are particularly poor when drawn with the inclusion
layout convention, as they result in a single nested
rectangle inside another. For paths of nodes of de-
gree 1, these nested margins add considerable visual
complexity and waste screen space, as can be seen in
Figure 11.

A Dbetter solution for the inclusion layout conven-
tion in this case is to compress each of these paths of
nodes into a single representative node. If desired, the
representative node can be scaled by an amount pro-
portional to the length of the compressed path. When
this occurs at leaf nodes, the resultant inclusion lay-
out approximates that of the original uncompressed
tree.

In addition, a visual cue such as a gradient may
be applied to the representative node, informing the
user that some information has been compressed in
order to save some screen space. However, when the
compressed nodes contain text, an application spe-
cific textual summary should be used for the text of
the representative node.

Figure 14 shows the results of applying path com-
pression to the Mine Pump DBT from Figure 11.
From Figure 14(a) we can see that the inclusion lay-
out is easier to understand with paths compressed, al-
though a visual cue would be useful to regather some
of the lost information. Figure 14(b) shows the same
compression, but retaining non-leaf nodes of degree
1 and scaling nodes. No space has been saved, but
the node scaling gives some information on the com-
pressed nodes, and may be useful where the size of
leaf nodes is of interest. No text summaries have been
generated for the representative nodes. Figure 14(c)
shows that the non-dominating functions of the com-
pressed trees are only marginally worse than the orig-
inal and have the same basic shape.

4 Conclusion

We have presented an empirical investigation of the
inclusion tree layout convention, based on design be-
haviour trees from Software Engineering and ontolog-
ical class hierarchies from Artificial Intelligence. Sev-
eral common measures of the size of an inclusion lay-
out have been examined. We find that the area size
measure is a poor measure for the inclusion layout
convention, and that measures which seek to acheive
a desired aspect ratio (such as the minimum enclosing
rectangle size measure) are more suitable.
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