COMP2004
Programming Practice
2002 Summer School

Kevin Pulo
School of Information Technologies
University of Sydney

Background

« Read information from disk to memory

as needed
» Disk is slow
- Memory is expensive

Pages diagram

Addresses

0123456789 ABCDEF =~ *

- A)

Page 0

« Each small box is a byte

- Each has an address along the top
« A page is a block of bytes

* Numbered from O
« This diagram has a page size of 16

Assignment 3
« Paging simulation

« Background

* Your task

« Paging algorithms
« First In First Out (FIFO)
- Least Recently Used (LRU)
« Pipelined LRU (PLRU)

Addresses and pages

» Address

- Specifies a byte on disk (>=0)
« Page

« A block of bytes on disk
« Page number

- Specifies a page on disk (>=0)
« Page size

« Number of bytes per page

- All pages have the same size

Finding page numbers

« For page size of 512 bytes:
- Page 0 is addresses 0 to 511
- Page 1 is addresses 512 to 1023
- Page 2 is addresses 1024 to 1535

« page number = address / page size
- Using integer division

« EQ: page size of 4096, address 372921

- Page number = 372921 / 4096
=91.045166...
=91

Frames

« Pages are read into frames
- Pages are on disk
- Frames are in memory

* A collection of frames is called a cache
- Has only few frames
- Compared to number of pages
* ie. number of frames is limited

- Stores only the pages needed right
now

Accessing information

« As a program runs it needs to access
data from disk

« Causes pages to be loaded into frames

« Program then accesses data in frame

« Entire page loaded into frame

« Each page present in at most one

frame

Cache misses
« Initially all frames unused
- Can load a page into any unused
frame
* When all frames used
- Must remove a frame before
loading page
« Paging algorithm
* Decides which frame to remove

Cache diagram

Initially:

* Each box is a frame
* Inside box:
- Number indicating the page stored
in that frame

- r/'w indicating frame clean/dirty
- We'll get to this later

Loading pages
« When a page is required, it may:
- already be in a frame - cache hit

* not be in a frame - cache miss

- Requires page to be loaded into a
frame before it can be used

Writing to frames

« Data access can be read or write
- Read doesn't modify data value
- Write may modify data value

« Writing causes data in frame to change
- But not in page on disk

« Now data in frame and page differ

* Data in frame is more recent

« Frames in this state are dirty

« Frames identical to pages on disk are

clean

Cache diagram revisited Write-back
« What happens if a dirty page is
Initially: ‘ (removed?
« Changes in frame must be put back to
disk
» This is called write-back
« Otherwise changes would be lost

* r indicates frame is clean
« w indicates frame is dirty

Types of cache miss Your task

« Cache miss causes frame to be « Imagine a series of read/write
removed operations
* Cache miss without write-back « Each results in one of

* Frame removed is clean
* Unused frame available
e Cache miss with write-back

» cache hit
» cache miss without write-back
» cache miss with write-back

« Frame removed is dirty

Your code Classes

« |s told about each operation in turn « Don't write a main() program
« Simulates the paging algorithm « One is supplied

- No need to actually read/write - Takes care of input/output

pages to/from disk/memory - Calls methods in your class

- Store which page is in each frame » Must be used

» And which frames are dirty « Write the Cache and CacheFactory
* Counts number of classes

» cache hits * Must be defined in Cache.h and

= cache misses without write-back CacheFactory.h files

» cache misses with write-back

Creating Cache objects

« How Cache objects are created is up
to you

» Will be created with

« string s; getline(cin, s);

« Cache *c =

CacheFactory:.createCache(s);

« Takes a string, constructs an
appropriate Cache object

« Returns a pointer to that newly
constructed object

Main loop

char mode;
Cache::addr t address;
while (cin >> mode >> address) {
if (mode == ') {
c->read(address);
} else if (mode == 'W') {
c->write(address);
}

outputStats(*c);

Output

void outputStats(const Cache &c) {
Cache::.counter_t hits = c.getHits(),
misses = c.getMisses(),
missesWB = c.getMissesWB();

cout << hits << " " <<
misses << " " <<
missesWB << endl;

« Performed after every read/write
operation and at end of program

Creation string format

« Creation string is the first line read by
the main program
* Has format:
- F page_size num_frames
« L page size num_frames
- P page_size num_frames
lookahead check frames

» page_size, num_frames, lookahead,
check_frames are integers

Cache typedefs

« Various typedefs defined in the Cache
class
« Each has an intended usage
« Cache::addr t
 Stores an address
« Cache::page t
- Stores a page number
» Cache::counter t
« Stores a counter
- €g. num of cache hits, etc

Paging algorithms
o First In First Out (FIFO)

« Least Recently Used (LRU)
« Pipelined LRU (PLRU)

* This order is easiest to hardest
« For automarking:

* FIFO : 40%

* LRU : 40%

- PLRU : 20%

First In First Out (FIFO)
« Very simple
* Remove frame which has been in the
cache for the longest time

« Can think of the cache as a list/queue
- New frames go at front
* Old frames removed from back

« Don't have to store it as a list/queue
- Can store however you like
» Choose an efficient method

Least Recently Used (LRU)

« Improves on FIFO
« When a frame is accessed (cache hit)
- Moved to the front of the list/queue

« Now recently used frames are at front
« Frames not recently used are at back

« Still removes frame from back
- The least recently used frame

Pipelined LRU (PLRU)

» Hardest/most complex
* Worth less than FIFO and LRU
» Therefore attack it last
- Don't let it ruin your design

« Improves on LRU

* Doesn't remove frames which will be
needed soon

« Acheives this by examining the
upcoming read/write operations

FIFO Example

« num_frames = 6, page_size = 512

«w 2000 (page 3)
oW 1492 (page 2)

Initially:

Read: w2000 5 | 1 |42 | 30| 4 | 3 Cache Hit
iy iy w r W

Read: w1492| 2 | 5 | 1 | 42| 30| 4 | CacheMiss With
w |r |r r Write-back

LRU Example
« num_frames = 6, page_size = 512
«w 2000 (page 3)
«wW 1492 (page 2)
Initially: 5 1 142 | 30| 4 | 3
r T r W r T
Read: w2000| 3 | 5 |1 42| 30| 4 Cache Hit
W r r T w iy
. Cache Miss Without
Read: w1492 w2’v gv E 1r 10:2 evO V\%Citee-baéis LEIOLE

Pipelining and lookahead list

« Lookahead list is a list of upcoming
read/write operations
« Has max length given by lookahead
« Best way to understand is with an
example
- Lookahead list length will be 4
- Lookahead list shown in yellow
« * indicates current input position
- + indicates operation just

processed

