COMP2004
Programming Practice
2002 Summer School

Kevin Pulo
School of Information Technologies
University of Sydney

When to throw

* Your functions should offer one of the
following:
* Basic Guarantee
» Resources are not leaked
- Objects are still usable if not
predictable
« Strong Guarantee
» Program state is as before the call
* Nothrow
* The function will never throw

Unexpected Exceptions

« What happens if a function you call
throws?

« You must make sure nothing leaks

* You must maintain invariants

* This is easier if all functions offer one
the guarantees

Exception Safety

« Exceptions make programming harder
 Your code should be exception safe

« It's not a matter of just using try/catch
« It's part design

« It's part minimising assumptions

When to catch

» Can the code handle the error and
clean up?
« Is this the best place to handle it?
« Use RAIl whenever it is possible
- We'll get to this in a minute...

Simple Throw Guides
« Throw when you can not handle the
error
* Document those errors
« Document the guarantee given

Simple try/catch Guides

« Use to handle errors you can deal with
- Use RAIl as much as possible
« Use to translate an exception
- From low level to high level for
example
« catch(...) to prevent exception leakage
- Only when caller code can't handle
exceptions

Bad Example Code

void some_function(int size) {
char *fred = new char[size];
/[do some stuff
delete [] fred;

}

« What happens if an exception is

thrown?
« The memory resource is leaked!

In General

void some_function() {

/I acquire resource A

/I do stuff

/I acquire resource B

/l do stuff

/I possibly more resources...
/I release resource B

/I release resource A

RAII

« Resource Acquisition is Initialisation
« A C++ idiom for dealing with resources

* Uses automatic variables to handle
resources

- Since the language manages them
{e]@Y/e]V

Fixing with try/catch

void some_function(int size) {
char *fred = new char[size];
try {
// do some stuff
} catch (...) {
delete [] fred;
throw;

}
delete [] fred;

Too Complicated

« Using try/catch blocks is too hard
- Lots of duplicate code
» Lots of exception handling run-time
overhead
« Verbose and tedious, error prone
* Doesn't scale
» Results in brittle code

Fixing with local variable
* Would like to do
void some_function(int size) {
char fred[size];
/[do some stuff

}

« If an exception is thrown, fred is

Use a class/struct
struct char_array {

char *array;
char_array(int size) {

array = new char|size];
}

~char_array() {
delete [] array;

automatically deleted when the

function ends operator char*() {
« But can't do this, since size isn't return array;

known until runtime

Original now becomes auto_ptr

void some_function(int size) { » Templated library class
char_array fred(size); « #include <memory>
/I do some stuff « Is a wrapper around a pointer
Y « Can be dereferenced like the pointer

« Destructor deletes the object pointed to
« If an exception is thrown fred will be

destroyed
* Because it is an automatic variable
« |ts destructor will be called
« Thus the array will be deleted

auto_ptr caveats
« auto_ptr's not always that easy

auto_ptr example

void do_enrolment(string name,
string course) { » Copying an auto_ptr leaves the

Person *pp = new Person(name);

original pointing nowhere
auto_ptr<Person> p(pp);

« Thus can't copy a const auto_ptr
« Shouldn't have > 1 auto_ptrto an

object
- Object may be deleted twice
» Shouldn't use in containers
. vector< auto_ptr<Person> > &v;
- Due to copy semantics above

p->enrol(course);

/[do some stuff

if (error_found) throw Error();
/| do some more stuff

/Il not needed: delete pp;

auto_ptr usage

» So stick to simple usage of auto_ptr

« Exception safe automatic pointers

« As a prewritten version of the
char_array struct

Member Initialiser Exceptions

SomeClass::SomeClass(int size)
. vec(size)

/I Contents of constructor...

« What if vec(size) throws an
exception?
» Passed on to caller
» Constructor can catch
- Syntax is a little bizarre

Copy Constructors and
Exceptions

« Copy constructors are a bit different
- They can throw exceptions
- But generally shouldn't
- The library assumes they don't

« Same for the assignment operator

Constructors and Exceptions

« Constructors can throw exceptions
« Keep this in mind when writing C++
« If so, no object is constructed
« Is the usual way to indicate an error
« Since constructors can't return
anything

Member Initialiser Exceptions

SomeClass::SomeClass(int size)

try
. vec(size)

// Contents of constructor...

catch (Error e) {
...
}

Destructors and Exceptions

« Throwing an exception in a destructor
is risky
» Automatic variable destructors
« Are called during stack unwinding
- Which is part of exception handling
« Throwing an exception then will
terminate() the program
« Best to stick to exceptions in
constructors only (where possible)

