COMP2004
Programming Practice
2002 Summer School

Kevin Pulo
School of Information Technologies
University of Sydney

Textbook

Accelerated C++ by Koenig & Moo

The C++ Programming Language by
Stroustrup (3rd edition)

C++ Primer by Lippman (3rd edition)
Thinking in C++ by Eckel (2nd Edition)

http://www.accu.org/

Assessment

Assignment 0 0%

Assignment 1 10%
Assignment 2 10%
Assignment 3 20%
Final Exam 60%

Need 45% in the exam and
assignment components to pass

About Me

Kevin Pulo
Room: Madsen (G88
Email: kev@cs.usyd.edu.au

Consultation:
30 mins before each lecture
Email to arrange an appointment
during consultation times

Course Information

Programming Practice

so it will involve programming
Using Development Tools
Using Software Libraries

http://www.cs.usyd.edu.au/~kev/pp/
Friday's lecture: 10am in Carslaw 175
Tutorials in Services bldg and LG45

Assignment Policy

Machine and hand marked
Follow output instructions exactly
Must work on department
software/hardware
Individual work - no groups or copying
No late assignments without valid
paperwork




The C++ Language C++ At Basser

The language we'll be using GNU C++ compiler
This is not a C course g++ -Wall -g -0 hello hello.cc
The syntax is similar to Java hello.cc contains the C++ code
A textbook or reference is essential Executable will be named hello
-Wall turns on all warnings
-g adds debugging information

A Simple C++ Program Variables and Constants

C++ programs start in a function called C++ is strongly typed
main Basic types like Java (int, double, etc)

#include <iostream> Prefix with const for constants

int main() {
std::cout << "Very simple" << std::endl;

}

That's a complete C++ program

Variables and Constants Enumerated Types

Types that can only have certain

For example named values

#include <iostream> Very useful for restricted domains

int main() { Each name is an integer internally
const int value = 5; enum day_of week {Sun, Mon, Tue,
int result = 4; Wed, Thu, Fri, Sat};
result += value; day of week today = Wed;
std::cout << result << std::endl;

}




Functions
Like Java methods except
They are not part of a class
No object is used to call them

double halve (int number) {
double result;
result = number / 2.0;
return result;

}

C++ Programming Style
C++ is a flexible language
as a procedural language
as a modular language
as an object oriented language
as a generic language

We'll progress through them all during

the course

Basic Output

std::cout is used to print output
#include <iostream>
int main() {

std::string s = "Hello";

int i = 42;

double d = 1.3;

char c =" "

std::cout << s << ¢ << | << ¢ << (;

Control Flow

if, switch, do, while, for - similar to Java

Some types convertable to bool

For numeric types:
Zero is false
Everything else is true

int main() {

int i =5;

if (i) //equivto: if (i I= 0)
std::cout << | << "js true\n";

Basic Input

std::cin is used to read input
#include <iostream>
int main() {

std::string s;

int i;

double d;

char c;

std::cin >> s >> | >> d >> c;

std::getline(cin, s);

Error Output

std::cerr works like std::cout
It is used for error messages
std::cerr will be ignored for marking
So debugging output should go to
std::cerr

#include <iostream>

int main() {
std::cerr << "Sent to std::cerr\n";
std::cout << "Sent to std::cout\n";

}




Streams
cin, cout and cerr are just instances of
streams
Streams are used for files as well
You can even use them for strings
For now we'll stick to cin and cout...

How Input/Output can fail

No input left - end of file
std::cin.eof() will return true

Wrong data - eg. "abc" is not an int
std::cin.bad() will return true

Hardware or system failure
std::cin.fail() will return true

Call std::cin.clear() to recover
The stream can then be used
Throws an exception if it fails

setw and setfill

setw sets minimum output width

resets to O after next output operation

setfill sets the fill characters

Fill character defaults to space
std::cout << std::setw(10) << 123;
std::cout << std::setw(5) << std::setfill('#");
std::cout << "hi" << 123;

Can also use std::cout.width(10)

And std::cout.fill('#")

More on Input

You can test std:.cin to see if input
succeeded
#include <iostream>
int main() {
int X, v;
if (std::cin >> x >> vy)
std::cout << "worked" << std::endl;
else
std::cout << "failed" << std::endl;

Manipulators

Manipulators are part of stream library
#include <iomanip> to use them
They perform operations on the stream
But are used just like input/output items
std::endl is an example
doesn't need #include <iomanip>
outputs \n' to the stream
flushes the stream

setprecision

Number of digits after the decimal point
Only applies to floating point output
Setting to O sets to the default

double d = 2.0 / 3.0;

std::cout << d << "\n

std::cout << setprecision(4) << d << \n

std::.cout << setprecision(0) << d << \n
Can also use std::cout.precision(4)




Buffered Output

std::cout is buffered

output may be delayed until:
the buffer is full
std::flush or std::endl is output

std::cerr is unbuffered
outputs immediately

std:.cerr for debug output

#include <iostream>

int main() {
std::cout << "A";
function_which_might_crash();
std::cout << "B";

}

std::cout << "A" << std::flush;
std::cout << "A" << std::endl;
std::cerr << "A";

flush

Defined in #include <iostream>
Flushes an unbuffered stream
Used when you need the output to
happen now
std::string name;
std::cout << "Enter name : " << std::flush;
std::cin >> name;
Can also use std::cout.flush();




